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This paper concentrates on the wave propagation 

characteristics of Functionally Graded (FG) porous shells. The 

transversal shear deformation of the shell is taken into consideration 

by employing a simple higher-ordered shear deformation shell 

theory. The equations of motion are derived for the proposed model 

based on Hamilton’s principle. An eigenvalue problem that relates 

the wave propagation elements is formulated and solved to present 

the various dispersion relations of FG cylindrical and spherical 

shells. The effects of porosities, shells’ geometrical parameters, FG 

material exponent, and wavenumbers on the principal wave 

propagation frequency and the associated phase velocity are 

investigated in detail. The research reveals that the phase velocities 

of waves traversing through shells are predominantly influenced by 

the porosity and the thickness and gradation of the constituent 

materials, whereas the geometric configuration of the shells, 

whether cylindrical or spherical, exerts a negligible impact. 

1. Introduction  

A civilization’s backbone is its structure. Over time, structures’ designs are evolving, 

improving the materials, geometry, and design methods. Initially, the materials used in 

manufacturing were homogeneous, causing deficiencies. Understanding composite laminated 

materials was the result. Even so, stress concentration occurs on the interfaces of the layers, leading 

to delamination, cracks, and other damage mechanisms such as out-of-plane and in-plane shear. A 

new generation of materials, Functionally Graded Materials (FGMs), overcome these deficiencies 

by carefully varying the component materials throughout the thickness, serving a specific function; 

hence their name. Structures made from FGM are typically made from ceramics and metals. 

Because the ceramic phase has a low thermal conductivity, it provides elevated temperature 

resistance, whereas the ductile metal phase prevents fracture caused by rising temperatures in a 

noticeably brief time. Furthermore, A FGM’s superior characteristics make it suitable for use in 

many fields, such as civil, mechanical, nuclear, etc. With FGMs, engine parts for airplanes and 

cars, rocket launchpads, submarine bodies, and hard-cutting tools can all be designed efficiently.  

Beams, plates, and shells are the most common FGM structures. A shell is identified by 

two parameters associated with the shell’s curvature. The types of curvatures determine the type 

of shell, such as elliptical, circular, conical, etc. Scientists have studied the bending, vibration, and 

buckling responses of shells, leading to an abundance of theory development. The 3D elasticity 

method is mathematically complex and computationally costly, igniting the need for simpler 2D 

theories. These theories are combined into three main categories. First, the Classical Shell Theory 
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(CST) was first used by Aron (1874) and later corrected by Love (1888). The CST neglects the 

transverse shear and captures the response of thin shells. However, thick shells require theories 

that take into consideration the effect of the transverse shear. Second is the First-Order shear 

deformation theory (FOSDT), in which Mindlin (1951) included the transverse shear strain effect. 

However, shear correction factors are required to ensure zero shear tresses at the top and bottom 

of the plates. The third type is the Higher-order shear deformation theory (HSDT), in which the 

displacement field is expressed in three terms accounting for transverse shear strain and no need 

for shear correction factors.  

The above-mentioned theories have been utilized in an abundance of articles to investigate 

shell bending and vibrational response. Liu, Wang, Wang, and Qin (2020) investigated the free 

vibration of FGM cylindrical shells using the FSDT while including an expansion of the wave 

function in the displacement field. By using the Wave-Based Method (WBM), the boundary 

conditions of the shell could be arbitrarily defined while maintaining the ease of construction of 

the global matrix. Hua, You, Huang, Fu, and Zhou (2024) studied the wave propagation of cracked 

cylindrical shells using the spectral element method and the first-order shear deformation theory. 

Tornabene (2009) presented a generalized differential quadrature solution based on first-order 

shear distribution theory to study the dynamic behavior of moderately thick, functionally graded 

conical, cylindrical, and annular plates. Using a modified First-order Shear Deformation Theory 

(FSDT), Mellouli, Jrad, Wali, and Dammak (2019) investigated the meshless implementation of 

arbitrary 3D-shell structures. Assuming a parabolic distribution of shear strain in the FSDT 

corrected the constant shear stress in the Mindlin-Reissner theory. Thus, the shear strain 

distribution through thickness was closer to a realistic distribution. As a part of Su and Jin’s (2016) 

research, spectral element analysis is used to analyze the free vibration of conical, cylindrical, and 

spherical shells with arbitrary boundary conditions. Every segment of the compound shell system 

is formulated using the first-order shear deformation shell theory. Several cases were considered, 

such as cylindrical-conical and cylindrical-spherical shells. Shahbaztabar, Izadi, Sadeghian, and 

Kazemi (2019) investigated the free vibration problem of circular, functionally graded, circularly 

cylinder shells embedded in a Pasternak elastic foundation and partially or completely in contact 

with a fluid based on the first-order shear deformation theory. Using the first-order shear 

deformation shell theory, Li (2019) determined the frequencies of stepped cylindrical shells. A 

multi-segment partitioning strategy is used for developing the analytical model. The Rayleigh-Ritz 

method is applied to obtain the solution to the free vibration behavior of FG cylindrical shells. 

Tornabene, Fantuzzi, and Bacciocch (2014) used higher order equivalent layer theory with 

Mukurami zigzag function effects to study the free vibration behavior of free-form doubly curved 

FG shells. Mori Tanaka’s model of material gradation has been used to solve equations using the 

GDQ method. In their study, Punera, Kant, and Desai (2018) use a higher-order theory to 

investigate the response of FG sandwich cylindrical shells considering both shear and normal 

strain effects. An extended thickness criterion is proposed as well, which makes the theory more 

applicable to thick and moderately thick shells.  

Some voids or pores exist in the functionally graded material during the production process 

because of processing defects. Such porosities influence the structure’s static and dynamic 

responses. Analytical investigations were performed by Fu, Wu, Xiao, and Chen (2020) on Porous 

Functionally Graded Material (P-FGM) cylindrical shells placed on elastic foundations under 

nonlinear thermal conditions. Three common types of PFGM cylindrical shells were considered 

based on the nonlinear heat conduction equation: uniform, symmetric, and asymmetric. The 

material properties were assumed to be dependent on temperature. Using blast loads and thermal 

conditions, Karakoti, Pandey, and Kar (2022) examined nonlinear transients of porous P-FGM and 

S-FGM sandwich plates and shell panels. A thin functionally graded cylindrical shell under 

uniform torsion was examined by Vu and Hoang (2022b) to determine its buckling and post-

buckling behaviors under porosity and tangential constraints. To determine the effective properties 
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of porous FGM, the properties of constituencies were estimated according to a modified mixture 

rule. From a classical shell theory, mathematical forms were developed that consider von Kármán-

Donnell’s elasticity and nonlinearity. By applying Donnell shell theory to (PFGM) cylindrical 

shells, Timesli (2021) investigated their buckling behavior. Through a modified power-law 

function and the Winkler and Pasternak models, the author developed explicit analytical 

expressions that consider the effects of porosities through the thickness of the shell and the elastic 

foundation. To obtain the nonlinear equations of motion, Liu and Qin (2021) applied Donnell’s 

nonlinear shallow shell theory and Hamilton’s principle to sandwich cylindrical shells with 

porosities on an elastic substrate. Using uniform, symmetric, and asymmetric distributions and 

assuming that material properties are related to temperature, Fu, Wu, Xiao, and Chen (2021) 

presented a semi-analytical method to investigate the dynamic instability of (PFGM) conical shells 

in thermal environments. Recent articles on the effect of a shell’s porosity include Foroutan and 

Dai (2022); Mirjavadi, Forsat, Barati, and Hamouda (2022); Le, Bui, Do, and Dang (2022a). 

Furthermore, it has been possible to investigate the vibrations of shells with a variety of 

boundary conditions by researchers. In their research, Najafizadeh and Isvandzibaei (2007) 

investigated the vibration of a thin Functionally Graded (FG) cylindrical shell. The shell is graded 

with stainless steel and nickel resting on simply supported SS-SS boundary conditions with ring 

support in the axial direction. The free vibration of shells composed of two outer layers of 

homogenous materials and a middle layer of FGM was investigated by Li, Fu, and Batra (2010). 

The shell is simply supported, and the governing equations are derived using Flügge’s shell theory. 

Using the system of joined shells made of FGM, Bagheri, Kiani, and Eslami (2021) studied the 

natural frequencies of conical and spherical shells. By assuming Donnel-type kinematics, the 

equations of motion are derived by assuming identical thickness for both shapes. Using the domain 

decomposition method, Wu, Qu, and Hua (2013) studied the free vibration of a joined cylindrical-

spherical shell with elastic boundary conditions. Qu, Long, Yuan, and Meng (2013) studied vibration 

characteristics of FG cylindrical shells with general boundary conditions using Chebyshev 

polynomials of the first kind, Chebyshev polynomials of the second kind, and Legendre polynomials. 

Each of the three polynomials is orthogonal, complete, and has a simple form.  

Additionally, researchers are concerned about the buckling and static responses of the shell. 

An extension of the Kirchhoff-Love model to the analysis of functionally graded structures during 

thermal buckling and post-buckling was carried out by Trabelsi, Zghal, and Dammak (2020). The 

delaminated region of a fiber-reinforced laminated cylindrical shell was modeled as an elliptical, 

triangular, or lemniscate shape by Wang, Lu, and Xiao (2002) to investigate the nonlinear thermal 

buckling behavior near the surface of fiber-reinforced laminated cylindrical shells near the surface. 

By applying the Galerkin method, the temperature distribution through the thickness direction was 

assumed by Sofiyev (2011) to be nonlinear in the case of thermal buckling of FGM circular 

truncated conical shells resting on two-parameter elastic foundations. Analyzing linear statics of 

composite structures reinforced with functionally rated carbon nanotubes was the purpose of a 

study by Zghal, Frikha, and Dammak (2017). Researchers considered five kinds of distributions 

of uniaxially aligned reinforcements along with the thickness of shell structures, i.e., one uniform 

and four functionally graded distributions. Recent articles on static and buckling analysis include 

Chang and Zhou (2022); Le, Pham, Bui, and Do (2022b); Talebi, Hedayati, Sadighi, and Ashoori 

(2022); Vu and Hoang (2022a). 

Many recent articles experimentally and analytically investigated the static and dynamic 

behavior of porous shells. Ramteke and Panda (2023) used a higher-order theory to develop a finite 

element model investigating the dynamic and static response on porous shells which confirmed 

the experimental results as well as published results. Xue, Jin, Zhang, Han, and Chen (2023) used 

a first-order shear theory and various porosity distributions along the thickness and length of 

cylindrical shells to study their vibration response. The weak form obtained was solved using the 

isogeometric analysis method (IGA) and the findings revealed a significant influence of the 



66            Saeed I. Tahir et al. HCMCOUJS-Advances in Computational Structures, 14 (1), 63-80 

symmetry in porosity distribution on the mode shapes. The wave propagation induced by thermal 

strain energy in FG cylindrical shells was investigated by Liang, Yaw, and Lim (2023) using first-

order shear deformation theory. It is worth noting that research is ongoing on shells reinforced with 

nanomaterials, for example, Zhang et al. (2022) investigated the propagation of waves on shells 

reinforced with carbon nanotubes using a nonlocal strain gradient model of a first-order theory.  

In contrast, other theories of higher-order shells generate a host of unknowns. Their 

governing motion equations are more complicated and computationally expensive than the ones 

yielded by the present theory. Based on this theory, this work traces wave propagation analysis of 

functionally graded porous shells using only four unknowns and four governing motion equations, 

which is a problem not handled in any article before. In this paper, we introduce undetermined 

integral terms into the displacement field in order to develop a new formulation of the governing 

differential equations. This hypothesis aims to simplify the analytical solution of different and 

complex shell problems by reducing the order of derivatives and the number of unknowns. The 

equations of motion are derived using Hamilton’s principle. Navier’s method is used to derive 

closed-form analytical solutions. With this theory, both shear strains and stresses are addressed in 

a hyperbolic way, ensuring that the top and bottom surfaces of the shell are stress-free. 

2. FGM shell configuration 

This section indicates a summary of theories/theoretical points/research that have been conducted 

previously. On that basis, propose research models, research hypotheses, or analytical frameworks. 

Consider a shell with a ceramic outer surface and a metallic inner surface with a ceramic-

metal functionally graded composition in between, as shown in Figure 1. The spherical shell (on 

the left) has a curvature in two directions, with radii  𝑅1 and  𝑅2. The cylindrical shell (in the right) 

has a curvature in a single direction while  𝑅2  approaches infinity. 

 
Figure 1. Figure caption Geometries and coordinate systems for FGM cylindrical  

and spherical shells 

A continuous variation in the volume fraction of ceramic and metal constituents can easily 

be produced by manufacturing a mixture of these materials. Consequently, a power-law 

distribution can be used to express the volume fractions of the ceramic 𝑉𝑐 and metal 𝑉𝑚  phases as 

follows: 
𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚)𝑉𝑐 − 𝜆/2 (𝐸𝑐 + 𝐸𝑚)  

𝜌(𝑧) = 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚)𝑉𝑐 − 𝜆/2 (𝜌𝑐 + 𝜌𝑚)  
     (1) 

where the ceramic volume fraction  (Vc) follows the power law given by 

𝑉𝑐 = (
2𝑧 − ℎ

2ℎ
)
𝑃

  (2) 

Ec, Em, and E(z) are the ceramic, metal, and effective Young’s moduli, respectively. 
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ρc,  ρm, and ρ(z) are the ceramic, metal, and effective mass densities. The Poisson’s ratio (υ) is 

considered to be constant. λ is the volume fraction of the uniformly distributed porosities. 

3. Formulation 

3.1. Kinematics 

The present analysis of the FG shell is based on the following displacement field. 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = (1 +
𝑧

𝑅1
)𝑢0(𝑥, 𝑦, 𝑡) − 𝑧

𝜕𝑤

𝜕𝑥
+ 𝑘1𝑓(𝑧)∫𝜃(𝑥, 𝑦, 𝑡) ⅆ𝑥 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = (1 +
𝑧

𝑅2
) 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧

𝜕𝑤

𝜕𝑦
+ 𝑘2𝑓(𝑧)∫𝜃(𝑥, 𝑦, 𝑡) ⅆ𝑦 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(3) 

Where 𝑢, 𝑣, and 𝑤 represent the displacements of the shell toward the 𝑥, 𝑦, and 𝑧 directions, 

respectively, at any location in the FG shell. The subscript (0) indicates the given displacement in 

the shell’s mid-plane. These mid-plane displacements depend only on time the position in the 

orthogonal curvilinear coordinates (𝑥, 𝑦), but they are independent of the 𝑧 coordinate. The shear 

shape function 𝑓(𝑧) implemented in the present analysis has a hyperbolic form given by Belabed 

et al. (2021). 

𝑓(𝑧) =
𝑐𝑜𝑠ℎ (

𝜋
2) ℎ

2 (𝑧𝜋 𝑐𝑜𝑠ℎ (
𝜋
2) − ℎ 𝑠𝑖𝑛ℎ (

𝜋𝑧
ℎ
))

𝜋
2
(𝑐𝑜𝑠ℎ (

𝜋
2
) − 1)

   (4) 

The linear strain components obtained from the present HSDT are separated based on the 

z-dependent coefficient in each term and simplified as follows. 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} − 𝑧 {

𝜀𝑥
𝑏

𝜀𝑦
𝑏

𝛾𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝜀𝑥
𝑠

𝜀𝑦
𝑠

𝛾𝑥𝑦
𝑠
} , {

𝛾𝑥𝑧
𝛾𝑦𝑧
} =

ⅆ𝑓(𝑧)

ⅆ𝑧
{
𝛾𝑥𝑧
𝑠

𝛾𝑦𝑧
𝑠 } (5) 

Where 

{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} =

{
  
 

  
 
𝜕𝑢0
𝜕𝑥

+
𝑤0
𝑅1

𝜕𝑣0
𝜕𝑦

+
𝑤0
𝑅2

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

, {

𝜀𝑥
𝑏

𝜀𝑦
𝑏

𝛾𝑥𝑦
𝑏

} =

{
  
 

  
 
𝜕2𝑤0
𝜕𝑥2

𝜕2𝑤0
𝜕𝑦2

2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

, 

  {

𝜀𝑥
𝑠

𝜀𝑦
𝑠

𝛾𝑥𝑦
𝑠
} =

{
 

 
𝑘1𝜃
𝑘2𝜃

𝑘1∫
𝜃

𝜕𝑦
ⅆ𝑥  + 𝑘2∫

𝜃

𝜕𝑥
ⅆ𝑦
}
 

 
, {

𝛾𝑥𝑧
𝑠

𝛾𝑦𝑧
𝑠 } = {

𝑘1∫𝜃ⅆ𝑥

𝑘2∫𝜃 ⅆ𝑦
} 

(6) 

The undetermined integral of θ is equivalent to the following forms: 

∫𝜃 ⅆ𝑥 = 𝐴′
𝜕𝜃

𝜕𝑥
 ,∫ 𝜃 ⅆ𝑦 = 𝐵′

𝜕𝜃

𝜕𝑦
  (7) 

Where, A’, B’, k1  and k2  are given by Tahir et al. (2022): 
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𝐴′ = −
1

𝜅1
2  , 𝐵

′ = −
1

𝜅2
2  , 𝑘1 = 𝜅1

2 , 𝑘2 = 𝜅2
2 (8) 

Based on the defined strains, the stresses of FG shells are obtained via the constitutive relations. 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝐶𝑄55]

 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
 𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}

 
 

 
 

 (9) 

Where the coefficients Qij are defined by: 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1 − 𝜈2
 , 𝑄12 =

𝑣 𝐸(𝑧)

1 − 𝑣2
  

𝑄44 = 𝑄55 = 𝑄66 =
𝐸(𝑧)

2𝑣 + 2
 

(10) 

3.2. Governing equations 

The equations are derived by employing the Hamilton principle. 

∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾) ⅆ𝑡
𝑡

0

= 0 (11) 

𝑈, 𝑉, and 𝐾 are the internal energy, the external work done on the shell, and the kinetic 

energy, respectively, and the first variation operator I denoted by 𝛿. The variation of the shell’s 

internal energy is given by:  

𝛿𝑈 = ∫  
𝛺

(𝑁𝑥𝛿𝜀𝑥
0 + 𝑁𝑦𝛿𝜀𝑦

0 +𝑁𝑥𝑦𝛿𝛾𝑥𝑦
0 +𝑀𝑥

𝑏𝛿𝜀𝑥
𝑏 +𝑀𝑦

𝑏𝛿𝜀𝑦
𝑏 +𝑀𝑥𝑦

𝑏 𝛿𝜀𝑥𝑦
𝑏 +𝑀𝑥

𝑠𝛿𝜀𝑥
𝑠 +𝑀𝑦

𝑠𝛿𝜀𝑦
𝑠

+𝑀𝑥𝑦
𝑠 𝛿𝜀𝑥𝑦

𝑠 + 𝑆𝑥𝑧𝛿𝛾𝑥𝑧
0 + 𝑆𝑦𝑧𝛿𝛾𝑦𝑧

𝑠 ) ⅆ𝛺 
(12) 

where 𝛺 outer surface of the shell, and 𝑁𝑖, 𝑀𝑖
𝑗
, and 𝑆𝑖 are the internal resultant forces and 

moments that are defined for the FGM porous shell by: 

[

𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦

𝑀𝑥
𝑏 𝑀𝑦

𝑏 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠 𝑀𝑦

𝑠 𝑀𝑥𝑦
𝑠

] = ∑∫ {
1
𝑧

𝑓(𝑧)
} . (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)ⅆ𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (13) 

and 

{
𝑆𝑥𝑧
𝑆𝑦𝑧

} = ∑∫ 𝑔(𝑧) {
𝜏𝑥𝑧
𝜏𝑦𝑧
} ⅆ𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (14) 

The resultant forces can be expressed in terms of the strain components as follows: 

{
  
 

  
 
𝑁𝑥
𝑁𝑦

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥
𝑠

𝑀𝑦
𝑠
}
  
 

  
 

=

[
 
 
 
 
 
 
𝐴11 𝐴12 𝐵11 𝐵12 𝐵11

𝑠 𝐵12
𝑠

𝐴12 𝐴22 𝐵12 𝐵22 𝐵12
𝑠 𝐵22

𝑠

𝐵11 𝐵12 𝐷11 𝐷12 𝐷11
𝑠 𝐷12

𝑠

𝐵12 𝐵22 𝐷12 𝐷22 𝐷12
𝑠 𝐷22

𝑠

𝐵11
𝑠 𝐵12

𝑠 𝐷11
𝑠 𝐷12

𝑠 𝐻11
𝑠 𝐻12

𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐷12
𝑠 𝐷22

5 𝐻12
𝑠 𝐻22

𝑠 ]
 
 
 
 
 
 

{
  
 

  
 
𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥
𝑏

𝜀𝑦
𝑏

𝜀𝑥
𝑠

𝜀𝑦
𝑠
}
  
 

  
 

, 
(15) 
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{

𝑁𝑥𝑦

𝑀𝑥𝑦
𝑏

𝑀𝑥𝑦
𝑠

} = [

𝐴66 𝐵66 𝐵66
𝑠

𝐵66 𝐷66 𝐷66
𝑠

𝐵66
𝑠 𝐷66

𝑠 𝐻66
𝑠
] {

𝛾𝑥𝑦
0

𝛾𝑥𝑦
𝑏

𝛾𝑥𝑦
𝑠

}, 

{
𝑆𝑥𝑧
𝑆𝑦𝑧

} = [
𝐴44
𝑠 0

0 𝐴55
𝑠 ] {

𝛾𝑥𝑧
𝑠

𝛾𝑦𝑧
𝑠 }  

Where  

[
 
 
 
𝐴11 𝐵11 𝐵11

𝑠 𝐷11 𝐷11
𝑠 𝐻11

𝑠

𝐴22 𝐵22 𝐵22
𝑠 𝐷22 𝐷22

𝑠 𝐻22
𝑠

𝐴12 𝐵12 𝐵12
𝑠 𝐷12 𝐷12

𝑠 𝐻12
𝑠

𝐴66 𝐵66 𝐵66
𝑠 𝐷66 𝐷66

𝑠 𝐻66
𝑠 ]
 
 
 

= ∑∫ (1, 𝑧, 𝑓, 𝑧2, 𝑧𝑓, 𝑓2) {

𝑄11
𝑄22
𝑄12
𝑄66

 } ⅆ𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (16) 

and 

{
𝐴44
𝑠

𝐴55
𝑠 } = ∑∫ 𝑔(𝑧)2  {

𝑄44
𝑄55

 } ⅆ𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (17) 

The external work is zero since the FGM shell is considered to be not under any external 

forces. The variation of the kinetic energy is given by: 

𝛿𝐾 = ∫ 
𝐴

((𝐼0 +
2𝐼1
𝑅1
) 𝑢̈0 − (𝐼1 +

𝐼3
𝑅1
)
𝜕𝑤̈0
𝜕𝑥

+ (𝐼2 +
𝐼4
𝑅1
) 𝑘1𝐴

′
𝜕𝜃̈

𝜕𝑥
)𝛿𝑢0

+ ((𝐼0 +
2𝐼1
𝑅2
) 𝑣̈0 − (𝐼1 +

𝐼3
𝑅2
)
𝜕𝑤̈0
𝜕𝑦

+ (𝐼2 +
𝐼4
𝑅2
)𝑘2𝐵

′
𝜕𝜃̈

𝜕𝑦
)𝛿𝑣0

+ (−(𝐼1 +
𝐼3
𝑅1
) 
𝜕𝑢̈0
𝜕𝑥

+ 𝐼3
𝜕2𝑤̈0
𝜕𝑥2

− 𝐼4𝑘1𝐴
′
𝜕2𝜃̈

𝜕𝑥2
− (𝐼1 +

𝐼3
𝑅2
)
𝜕𝑣̈0
𝜕𝑦

+ 𝐼3
𝜕2𝑤̈0
𝜕𝑦2

− 𝐼4𝑘2𝐵
′
𝜕2𝜃̈

𝜕𝑦2
+ 𝐼0𝑤̈0)𝛿𝑤0

+ (𝑘1𝐴
′ (𝐼2 +

𝐼4
𝑅1
) 
𝜕𝑢̈0
𝜕𝑥

− 𝐼4 𝑘1𝐴
′
𝜕2𝑤̈0
𝜕𝑥2

+ 𝐼5(𝑘1𝐴
′)2
𝜕2𝜃̈

𝜕𝑥2

+ 𝑘2𝐵
′ (𝐼2 +

𝐼4
𝑅2
) 
𝜕𝑣̈0
𝜕𝑦

− 𝐼4 𝑘2𝐵
′
𝜕2𝑤̈0
𝜕𝑦2

+ 𝐼5(𝑘2𝐵
′)2
𝜕2𝜃̈

𝜕𝑦2
)𝛿𝜃 ⅆ𝐴 

(18) 

Where  

(𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) = ∑∫ (1, 𝑧, 𝑓, 𝑧2, 𝑧𝑓, 𝑓2) 𝜌(𝑧) ⅆ𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (19) 

Using the derived expressions of 𝛿𝑈 and  𝛿𝐾, the governing differential equations of the 

functionally graded shell are derived from the Hamilton principle to be: 

𝛿𝑢0 ∶    
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= −(𝐼0 +

2𝐼1
𝑅1
) 𝑢̈0 + (𝐼1 +

𝐼3
𝑅1
)
𝜕𝑤̈0
𝜕𝑥

− 𝑘1𝐴
′ (𝐼2 +

𝐼4
𝑅1
)
𝜕𝜃̈

𝜕𝑥
 

𝛿𝑣0 ∶    
𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
= −(𝐼0 +

2𝐼1
𝑅2
) 𝑣̈0 + (𝐼1 +

𝐼3
𝑅1
)
𝜕𝑤̈0
𝜕𝑦

− 𝑘2𝐵
′ (𝐼2 +

𝐼4
𝑅2
)
𝜕𝜃̈

𝜕𝑦
 

(20) 
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𝛿𝑤0 ∶   
𝜕2𝑀𝑋

𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
−
𝑁𝑥
𝑅1
−
𝑁𝑦

𝑅2

= (𝐼1 +
𝐼3
𝑅1
) 
𝜕𝑢̈0
𝜕𝑥

− 𝐼3
𝜕2𝑤̈0
𝜕𝑥2

+ 𝐼4𝑘1𝐴
′
𝜕2𝜃̈

𝜕𝑥2
− (𝐼1 +

𝐼3
𝑅2
)
𝜕𝑣̈0
𝜕𝑦

− 𝐼3
𝜕2𝑤̈0
𝜕𝑦2

+ 𝐼4𝑘2𝐵
′
𝜕2𝜃̈

𝜕𝑦2
− 𝐼0𝑤̈0 

𝛿𝜃 ∶    −𝐴′𝑘1
𝜕2𝑀𝑥𝑦

𝑠

𝜕𝑥𝜕𝑦
− 𝐵′𝑘2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
− 𝑘1𝑀𝑥

𝑠 − 𝑘2𝑀𝑦
𝑠 + 𝐴′𝑘1

𝜕𝑆𝑥𝑧
𝜕𝑥

+ 𝐵′𝑘2
𝜕𝑆𝑦𝑧

𝜕𝑦

= −𝑘1𝐴
′  (𝐼2 +

𝐼4
𝑅1
)
𝜕𝑢̈0
𝜕𝑥

+ 𝐼4 𝑘1𝐴
′
𝜕2𝑤̈0
𝜕𝑥2

− 𝐼5(𝑘1𝐴
′)2
𝜕2𝜃̈

𝜕𝑥2

− 𝑘2𝐵
′  (𝐼2 +

𝐼4
𝑅2
)
𝜕𝑣̈0
𝜕𝑦

+ 𝐼4 𝑘2𝐵
′
𝜕2𝑤̈0
𝜕𝑦2

− 𝐼5(𝑘2𝐵
′)2
𝜕2𝜃̈

𝜕𝑦2
 

3.3. Dispersion relations 

The general solution form of the present wave propagation problem is given as 

{
 

 
𝑢0(𝑥, 𝑦, 𝑡)

𝑣0(𝑥, 𝑦, 𝑡)

𝑤0(𝑥, 𝑦, 𝑡)

𝜃(𝑥, 𝑦, 𝑡) }
 

 
= {

𝑈 
𝑉 
𝑊
𝛩 

}  𝑒𝑥𝑝 [𝑖(𝜅1𝑥 + 𝜅2𝑦 − 𝜔𝑡)] (21) 

𝑈, 𝑉,𝑊, and Θ are the wave amplitudes corresponding to the maximum displacements at a 

certain frequency 𝜔. The motion equations are expressed in a matrix form after employing the 

solution form of wave propagation as follows:  

([𝐾] − 𝜔2[𝑀]) {𝛬} = 0 (22) 

Where [𝐾] is the stiffness matrix and [𝑀] is the mass matrix.  

[𝐾] = [

𝑘11    𝑘12    𝑘13    𝑘14
𝑘12    𝑘22    𝑘23    𝑘24
𝑘13    𝑘23    𝑘33    𝑘34
𝑘14    𝑘24    𝑘34    𝑘44

] 

[𝑀] = [

𝑚11 0 𝑚13 𝑚14

0 𝑚22 𝑚23 𝑚24

𝑚13 𝑚23 𝑚33 𝑚34

𝑚14 𝑚24 𝑚34 𝑚44

] , {𝛬} = {

𝑈
𝑉
𝑊
𝛩

} 

(23) 

Where  

𝑘11 = 𝐴11𝜅1
2 + 𝐴66𝜅2

2  

𝑘12 = 𝜅1𝜅2(𝐴12 + 𝐴66) 

𝑘13 = −𝑖 𝜅1 (
𝐴11
𝑅1

+
𝐴12
𝑅2

+ 𝐴_12𝐵11𝜅1
2 + 𝜅2

2(𝐵12 + 2𝐵66)) 

𝑘14 = −𝑖 𝜅1(𝑘1𝐵11
𝑠 + 𝑘2𝐵12

𝑠 − (𝐴′𝑘1 + 𝐵
′𝑘2)𝐵66

𝑠 𝜅2
2) 

𝑘22 = 𝐴22𝜅2
2 + 𝐴66𝜅1

2 

𝑘23 = −𝑖 𝜅2 (
𝐴22
𝑅2

+
𝐴12
𝑅1

+ 𝐵22𝜅2
2 + 𝜅1

2(𝐵12 + 2𝐵66)) 

(24) 
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𝑘24 = −𝑖 𝜅2(𝑘2𝐵22
𝑠 + 𝑘1𝐵12

𝑠 − (𝐴′𝑘1 + 𝐵
′𝑘2)𝐵66

𝑠 𝜅1
2) 

𝑘33 = −
𝐴11

𝑅1
2 −

𝐴22

𝑅2
2 −

2𝐴12
𝑅1𝑅2

− 2(
𝐵11
𝑅1

+
𝐵12
𝑅2
) 𝜅1

2 − 2(
𝐵22
𝑅2

+
𝐵12
𝑅1
)𝜅2

2 − 𝐷11𝜅1
4 − 𝐷22𝜅2

4

− 2(𝐷12 + 2𝐷66)𝜅1
2𝜅2

2 

𝑘34 = −(
𝐵11
𝑠

𝑅1
+
𝐵12
𝑠

𝑅2
)𝑘1 − (

𝐵11
𝑠

𝑅2
+
𝐵12
𝑠

𝑅1
)𝑘2 − (𝑘1(𝐷11

𝑠 + 𝑘2𝐷12
𝑠 )𝜅1

2 − (𝑘1𝐷12
𝑠 + 𝑘2𝐷22

𝑠 )𝜅2
2

+ 2(𝐴′𝑘1𝐷66
𝑠 +𝐵′𝑘2𝐷66

𝑠 )𝜅1
2𝜅2

2 

𝑘44 = −𝑘1
2𝐻11

𝑠 − 2𝑘1𝑘2𝐻12
𝑠 − 𝑘2

2𝐻22
𝑠 − (𝐴′

2
𝑘1
2 + 2𝐴′𝐵′𝑘1𝑘2 +𝐵

′2𝑘2
2)𝐻66

𝑠 𝜅1
2𝜅2

2 + 𝐴′𝑘1
2𝐴55

𝑠

+ 𝐵′𝑘2
2𝐴44

𝑠  

and 
𝑚11 = 𝐼0 + 2𝐼1/𝑅1 

𝑚13 = −𝑖𝐼1𝜅1 − 𝜅1𝐼3/𝑅1 

𝑚14 = 𝑖𝐴
′𝑘1𝐼2𝜅1 − (𝐴

′𝑘1𝜅1)𝐼4/𝑅1 

𝑚22 = 𝐼0 + 2𝐼1/𝑅2 

𝑚23 = −𝑖𝐼1𝜅2 + 𝜅2𝐼3/𝑅2 

𝑚24 = 𝑖𝐵
′𝑘2𝐼3𝜅2 − (𝐵

′𝑘2𝜅2)𝐼4/𝑅2 

𝑚33 = −𝐼0 − 𝐼3(𝜅1
2 + 𝜅2

2) 

𝑚34 = 𝐼4(𝐴
′𝑘1𝜅1

2 + 𝐵′𝑘2𝜅2
2) 

𝑚44 = −𝐼5((𝐴
′𝑘1𝜅1)

2 + (𝐵′𝑘2𝜅2)
2) 

(25) 

The principal frequencies are evaluated by solving the following eigenvalue problem.  

 

|[𝐾] − 𝜔2[𝑀]| = 0 (26) 

The phase velocity is related to the frequency by: 

 

𝐶𝑖𝑗 =
𝜔𝑗

𝜅𝑖
 ,   (𝑖 = 1,2 𝑎𝑛ⅆ 𝑗 = 1,2,3,4) (27) 

4. Result and discussion 

This section illustrates how material exponent, porosity, and thickness affect wave 

propagation of FGM shells through various examples. The mechanical properties of ceramic and 

metal are 𝐸𝑐 = 380 𝐺𝑃𝑎, 𝜌𝑐 = 3800 𝑘𝑔/𝑚3, 𝐸𝑚 = 70 𝐺𝑃𝑎, 𝜌𝑚 = 2707 𝑘𝑔/𝑚3, and 𝑣𝑐 =
𝑣𝑚 = 0.3 (M. Sobhy, 2016). These properties are used to generate the following results along 

with ℎ = 0.1 𝑚, 𝑅 = 5 𝑚, 𝜅 = 100 𝑚−1, 𝑃 = 1, and 𝜆 = 0.1 as default values. 

Figure 2 shows how varying the material power-law exponent affects the relationship 

between wavenumber (κ) and wave frequency (ω) for spherical and cylindrical shells. Wave 

frequencies are the same in spherical and cylindrical shells. In general, for both shapes, it is 

observed that the angular frequency of the wave decreases when the material is elevated from full 

ceramic (𝑃 = 0) to fully metal (𝑃 = ∞). In other words, the maximum frequency of a wave will 

occur in a ceramic shell, and it decreases in an FGM ceramic-metal shell, while the smallest 

frequency will occur when passing through a metal shell. Additionally, the angular frequency of 
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waves is proportional to their wavenumber for certain material exponents; the greater the wave 

number, the higher the frequency. 

 
Figure 2. The dispersion relation between ω and κ of FG porous shells: (a) spherical shell,  

(b) cylindrical shell 

The phase velocity (𝐶) of a wave, on the other hand, is inversely proportional to the 

wavenumber; the higher the wavenumber, the lower the phase velocity. For low values of 

wavenumber (𝜅 < 300 𝑚−1), this relationship is very evident as the velocity tends to horizontally 

stabilize for higher values of wavenumber, as shown in Figure 3. The wave’s phase velocity is also 

significantly lower when the material’s power exponent is increased; the higher the metal’s volume 

fraction, the lower the wave’s phase velocity. This is explained by the lower density of metal 

2707 𝑘𝑔/𝑚3 compared to that of the ceramic 3800 𝑘𝑔/𝑚3; compression and rarefaction are 

easier in denser materials. 

 

Figure 3. The dispersion relation between C and κ of FG porous shells: (a) spherical shell,  

(b) cylindrical shell 

In Figure 4, the relationship between wave frequency and phase velocity is shown for 

various material exponents. Wave phase velocity decreases with increasing wave frequency 

regardless of the power exponent. More energy is transmitted to the medium in higher frequency 

waves, resulting in a slower speed. Likewise, as shown in Figure 3, shells with higher material 

exponents experience less velocity, and their shapes do not affect velocity. 

As shown in Figures 5 and 6, shell thickness impacts phase velocity across the entire range 

of wavenumbers. The thicker the shell, the higher the phase velocity of the passing wave. It is 
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clear. However, that thickness has a significant impact on the velocity at low wavenumbers, while 

this effect becomes small at wavenumbers (𝜅 > 800 𝑚−1). A similar trend is noticed when 

considering the effect of the wave’s frequency on the phase velocity, as shown in Figure 6. In the 

case of a particular wave frequency, thicker shells cause a higher velocity than thin shells. In 

addition, the lower phase velocity for a certain shell thickness is caused by large frequencies 

dissipating the kinetic energy of the wave. This is because large frequencies dissipate wave energy. 

 
Figure 4. The dispersion relation between C and ω of FG porous shells: (a) spherical shell,  

(b) cylindrical shell 

 

 
Figure 5. The dispersion relation between C and κ of FG porous shells: (a) spherical shell,  

(b) cylindrical shell 
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Figure 6. The dispersion relation between C and ω of FG porous shells: (a) spherical shell,  

(b) cylindrical shell 

An examination of the effect of porosity volume fractions on the dispersion of waves in 

shells is shown in Figure 7. Having porosity decreases phase velocity, which is critical. When 

power exponents exceed one and porosity volume fractions exceed 0.2, there is a noticeable 

decrease in velocity. The effect is similar regardless of whether the shell is cylindrical or spherical. 

A comparison of the shell thickness with the phase velocity is shown in Figure 8 for 

different radii of curvature. For all curvatures’ radii, increasing the thickness leads to a slight 

velocity reduction. Shells with a spherical shape show a greater reduction than shells with a 

cylindrical shape. 

 

 

Figure 7. The dispersion relation between C and λ of FG porous shells: (a) spherical shell,  

(b) cylindrical shell 
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Figure 8. The dispersion relation between C and h of FG porous shells: (a) spherical shell,  

(b) cylindrical shell 

As shown in Table 1, various parameters are investigated to determine the phase velocity 

of spherical shells, including the material exponents, the curvature radius, the thickness, the 

volume fraction, and the porosity. Generally, the phase velocity is proportional to curvature radii, 

thickness, and porosities but inversely proportional to material exponents. As shown in Table 2, 

the same investigation is conducted for cylindrical shells. By comparing the two tables, it is evident 

that the shape of the shell has a negligible effect on phase velocity. Consideration must be given, 

however, to porosities since their presence increases velocity values. 

Table 1 

Phase velocities (km/s) of FG porous spherical shells and flat panels for different material 

exponents, porosities volume fractions, thicknesses, and curvature radii (𝑅1 = 𝑅2 = 𝑅) 

R h λ 
P 

0 0.2 1 2 10 ∞ 

10 

0.05 

0.00 07.981 07.584 06.533 05.830 04.514 04.062 

0.10 08.095 07.670 06.499 05.695 04.106 04.062 

0.20 08.230 07.773 06.444 05.480 03.476 04.062 

0.30 08.394 07.899 06.339 04.943 01.922 04.062 

0.10 

0.00 08.771 08.355 07.294 06.590 05.191 04.464 

0.10 08.896 08.453 07.294 06.502 04.847 04.464 

0.20 09.045 08.570 07.294 06.387 04.252 04.464 

0.30 09.225 08.714 07.294 05.548 01.891 04.464 

50 
0.05 

0.00 07.981 07.584 06.534 05.830 04.515 04.062 

0.10 08.095 07.670 06.500 05.696 04.106 04.062 

0.20 08.230 07.773 06.444 05.480 03.477 04.062 

0.30 08.394 07.899 06.340 04.943 01.921 04.062 

0.10 0.00 08.771 08.356 07.296 06.592 05.192 04.464 
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R h λ 
P 

0 0.2 1 2 10 ∞ 

0.10 08.896 08.454 07.296 06.503 04.848 04.464 

0.20 09.045 08.571 07.296 06.389 04.253 04.464 

0.30 09.225 08.715 07.296 05.542 01.889 04.464 

∞  

0.05 

0.00 07.981 07.584 06.534 05.830 04.515 04.062 

0.10 08.095 07.670 06.500 05.696 04.106 04.062 

0.20 08.230 07.773 06.444 05.481 03.477 04.062 

0.30 08.394 07.899 06.340 04.943 01.921 04.062 

0.10 

0.00 08.771 08.356 07.296 06.592 05.192 04.464 

0.10 08.896 08.454 07.296 06.504 04.848 04.464 

0.20 09.045 08.571 07.296 06.390 04.253 04.464 

0.30 09.225 08.715 07.296 05.541 01.888 04.464 

Table 2 

Phase velocities (km/s) of FG porous cylindrical shells for different material exponents, porosities 

volume fractions, thicknesses, and curvature radii (𝑅2 = ∞) 

R1 h λ 
P 

0 0.2 1 2 10 ∞ 

10 

0.05 

0.00 7.981 7.584 6.534 5.830 4.515 4.062 

0.10 8.095 7.670 6.500 5.695 4.106 4.062 

0.20 8.230 7.773 6.444 5.480 3.477 4.062 

0.30 8.394 7.899 6.340 4.943 1.921 4.062 

0.10 

0.00 8.771 8.356 7.295 6.591 5.192 4.464 

0.10 8.896 8.453 7.295 6.503 4.848 4.464 

0.20 9.045 8.570 7.295 6.389 4.253 4.464 

0.30 9.225 8.714 7.295 5.544 1.890 4.464 

50 

0.05 

0.00 7.981 7.584 6.534 5.830 4.515 4.062 

0.10 8.095 7.670 6.500 5.696 4.106 4.062 

0.20 8.230 7.773 6.444 5.481 3.477 4.062 

0.30 8.394 7.899 6.340 4.943 1.921 4.062 

0.10 

0.00 8.771 8.356 7.296 6.592 5.192 4.464 

0.10 8.896 8.454 7.296 6.504 4.848 4.464 

0.20 9.045 8.571 7.296 6.390 4.253 4.464 

0.30 9.225 8.715 7.296 5.542 1.888 4.464 
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5. Conclusions 

A four-unknown integral HSDT was used to investigate wave propagation in porous 

cylindrical and spherical shells. This study combines the advantages of reducing the number of 

variables to four, considering stretching of the thickness, and considering transverse shear. In this 

study, porosities have been shown to significantly influence the shell phase velocity, while the 

shape, whether cylindrical or spherical, had an insignificant effect. Additionally, the thickness and 

gradation of constituent materials were found to significantly influence the phase velocities of 

waves passing through the shells. The phase velocity is inversely proportional to the material 

exponent but proportional to the curvature radius, thickness, and porosity. It is important to note 

that this theory does not respect continuity conditions at interfaces between the layers, especially 

if laminated structures are used. 
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