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Technological advancements in the field of artificial 

intelligence have enabled significant progress in various areas, 

particularly in optimizing the structural configuration of multi-layer 

composites. The main objective of this study is to investigate how 

geometric parameters, such as fiber orientation and number of 

layers, influence the mechanical properties of these materials. To 

predict the mechanical properties based on the number and 

orientation of layers during bending tests, we used a hybrid E-Jaya-

ANN optimization technique and compared it with the hybrid Jaya-

ANN to evaluate the accuracy of the approach. Additionally, using 

ABAQUS software, a numerical model has been created based on 

Hashin’s damage criterion to predict the behavior of composite 

specimens (CFRP) under bending loads and to collect a number of 

databases starting with the validation model. Subsequently, we 

generated a series of numerical results representing various 

practical scenarios to serve as a basis for training an Improved 

Artificial Neural Network (IANN). Our ability to obtain a better 

architecture for the laminated layers was made possible by the 

influence and variation of these materials’ mechanical properties. 

1. Introduction  

Recently, Fiber Reinforced Polymer (FRP) composites have gained widespread use 

across numerous industries, notably in aerospace, automotive, and civil engineering, owing to 

their exceptional properties, ease of processing, and lightweight nature in comparison to other 

materials. 

To establish a foundational understanding of the field of materials science, a plethora of 

fundamental research endeavors have been undertaken to investigate their mechanical behavior. 

These investigations encompass both static (Ahmed & Wei, 2014; Humeau, Davies, & 

Jacquemin, 2018; Li, Mines, & Birch, 2001) and dynamic (Can & Meram, 2022; Capozucca & 

Bonci, 2015; Hong et al., 2013) analyses aimed at extracting the mechanical properties essential 

for material evaluation. The majority of this research is dedicated to studying the mechanical 

behavior of unidirectional (UD), bidirectional, or even short fiber laminates under various stress 

conditions. Mechakra, Nour, Lecheb, and Chellil (2015) experimentally studied the mechanical 

properties of a composite material reinforced with Alfa. Capozucca and Bossoletti (2014) carried 

out static and dynamic (free vibration) experimental studies on the behavior of reinforced 

concrete beams strengthened with NSM CFRP and GFRP. Mansouri, Djebbar, Khatir, and Abdel 

Wahab (2019) studied the impact of hygrothermal aging time and temperature on the mechanical 

properties such as yield strength, maximum stress, and flexural modulus, of a mixed short 

fiber/fabric composite. Also, some studies delved into the structure of the layers, to scrutinize the 
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impact of fiber orientation (Berton, Coussa, Berthe, Brieu, & Deletombe, 2022; Cepero-Mejías, 

Phadnis, Kerrigan, & Curiel-Sosa, 2021; Samyal, Singh, & Bagha, 2019) and stacking sequence 

(Lopes et al., 2009; Malik & Arif, 2013; Park, 2001) on the performance and mechanical 

properties of laminated composites. 

Optimization methods grounded in Artificial Neural Networks (ANN) offer efficient and 
rapid solutions for addressing complex and non-linear problems. These approaches leverage 
innovative mathematical tools and behavioral principles, finding widespread applications in 
construction and structural engineering, including damage identification. Migallón, Jimeno-
Morenilla, Sánchez-Romero, Rico, and Rao (2019) established the Jaya Parallel Algorithm (JPA) 
based on static multipopulation, in order to improve the efficiency of cluster computing. Khatir 
et al. (2020) introduced an efficient approach that combines ANN with the Jaya algorithm to 
optimize parameters using data collected from measurements and both experimental and 
numerical models. (Zenzen, Khatir, Belaidi, Le, and Wahab (2020) proposed a new modified 
damage indicator to predict the position and level of damage in a composite structure based on 
transmissibility techniques combined with ANN. Ghandourah et al. (2022) introduce an 
improved Artificial Neural Network (ANN) designed for predicting the displacement of 
composite material pipelines subjected to varying falling hammer impact velocities. 
Ouladbrahim et al. (2022) employed various optimization techniques (WOA-ANN, GA-ANN, 
AOA-ANN, WOABAT-ANN) for crack length identification, while Gholami, Kamankesh, 
Mohammadi, Hosseinkhani, and Abdi (2022) enhanced the Jaya algorithm’s performance, 
resulting in the Powerful Enhanced Jaya (PEJAYA), which outperformed other algorithms in 
various applications. Khatir, Capozucca, Khatir, and Magagnini (2022) integrated ANN with the 
Butterfly Optimization Algorithm (BOA) to predict cracks in steel and aluminum beams. 
Additionally, they employed Particle Swarm Optimization (PSO) in conjunction with the Yuki 
Algorithm to forecast cracks in CFRP composite beams (Achouri, Khatir, Smahi, Capozucca, & 
Brahim, 2023; Khatir et al., 2023). 

In our study, we introduce a novel approach to optimize FRP composite structures using 
hybrid neural network techniques. We develop a validated numerical model based on the Hashin 
damage criterion, assessing the impact of fiber orientation and layer count on peak load and 
displacement. The novelty lies in applying Jaya-ANN and E-Jaya-ANN optimization algorithms 
to enhance multilayer structure performance, showcasing the effectiveness of our approach in 
tailoring FRP composites for improved functionality. This comprehensive methodology offers a 
practical and innovative means of optimizing FRP composite structures for real-world 
applications. By bridging advanced numerical modeling, experimental validation, and state-of-
the-art optimization, our study contributes a holistic understanding and practical solutions for 
enhancing the performance of these structures. 

2. FE Analysis 

A numerical simulation employing the Finite Element Method (FEM) was conducted 
using the commercial software ABAQUS to assess the material’s capacity to withstand a three-
point bending load. This evaluation was based on experimental data derived from the writer’s 
previous work (Ahmed & Wei, 2014), which examined the impact of fiber orientation on a 
laminated composite with a quasi-isotropic stacking sequence. The composite was reinforced 
with 16 plies of unidirectional carbon fibers embedded in an epoxy resin. Mechanical 
characterization was carried out through three-point bending tests using a computer-controlled 
universal electronic machine (type: WDW-20). The model’s geometry was defined with 
dimensions of 40mm in length between supports, 15mm in width, and 1.76mm in thickness (see 
Figure 1). Boundary conditions were selected to mirror the experimental setup. In this study, the 
Hashin damage criterion was employed, utilizing the parameters outlined in Table 1. 
Subsequently, a fine mesh of type (S4R: A 4-node doubly curved thin or thick shell, reduced 
integration, hourglass control, finite membrane strains) was created and refined to encompass 
1,425 elements and 1,520 nodes, ensuring precise numerical results (see Figure 2, (a-b)). 
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Figure 1. Dimensions presentation of the numerical model 

Table 1 

 Parameters of Hashin damage model 

Parameters Notation Value 

Elastic modulus in longitudinal direction 
11E  ][135 aGP  

Elastic modulus in transverse direction 
22 33E E=  ][5.331 aGP  

Shear modulus in plane containing fiber 
12G  ][5.411 aGP  

Shear modulus in plane containing fiber 
13 23G G=  ][2.221 aGP  

Poisson’s ratio 
12  [ ]0.25 −  

Poisson’s ratio 
13 23 =  [ ]0.2 −  

Density   2 49
[ / ]1.52*10 Ns mm

−
 

Fiber volume fraction 
fV  [%]0.85  

Tensile strength in longitudinal direction 
tX  ][2051.73 aMP  

Compressive strength in longitudinal direction 
cX  ][1025.86 aMP  

Tensile strength in transverse direction 
tY  ][23.1 aMP  

Compressive strength in transverse direction 
cY  ][54.6 aMP  

Longitudinal shear strength 12S  ][60.2 aMP  

Transverse shear strength 13S  ][22 aMP  

Fracture toughness in longitudinal tensile direction t
fG  

2
[ ]/160 KJ m  

Fracture toughness in longitudinal compressive 

direction 

c
fG  

2
[ ]/25 KJ m  
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Parameters Notation Value 

Fracture toughness in transverse tensile fracture 

mode 

t
mG  

2
[ ]/10 KJ m  

Fracture toughness in transverse compressive fracture 

mode 

c
mG  

2
[ ]/2.25 KJ m  

 

 

    

(a) (b) 

Figure 2. (a) Boundary condition and mesh model;  

(b) The Stacking sequence of CFRP composite 

The objective of the ABAQUS simulation of the laminate composite (carbon/epoxy) is to 

predict the three-point bending response and then to compare and verify them with the 

experimental results. 

The experimental and numerical load-displacement evolution curves are illustrated in the 

following Figure 3. 

  

 

Figure 3. Comparison between experimental and FEM load-displacement curves 

Source: Ahmed and Wei (2014) 
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Based on this comparison, it is observed that the curves have almost the same slope, which 

implies that the values obtained from the experimental and numerical tests are very similar. 

From this validation, we proposed a numerical study on the parameters that directly 

influence the structural and mechanical properties of multilayer composites, in particular, the 

number of layers and fiber orientations. 

2.1. The influence of the number of layers 

This experiment was conducted to study the influence of the layer numbers on the 

mechanical behavior of CFRP composite specimens, in the same type of fiber and the same 

thickness of the layers, varying the layer numbers (see Figure 4). 
 

   

[0 / 90 / 45 / 45 ]  −  
 

Total thickness = 0.44 mm 

[0 / 90 / 45 / 45 ]
s

  −    

Total thickness = 0.88 mm 

2
[0 / 90 / 45 / 45 ]

s
  −    

Total thickness = 1.76 mm 

Figure 4. Sequences of different layers number used 

The following Figure 5 shows the load-displacement comparison curves between three 

cases with different numbers of layers. 

 

 

 Figure 5. Evolution load-displacement curves obtained for different layer numbers 

The results of this analysis show that the peak load of the structure changes 

proportionally to the number of layers (see Figure 5). 
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2.2. Influence of fiber orientation 

In this part, different orientations of the layers were considered (see Figure 6), in order to 

determine their influences on the peak load in bending. All specimens are characterized by the 

same type of fibers and the same total number of plies; furthermore, the thickness of each layer 

is equal. 

 
  

8
[0 ]

s
  2

[0 / 30 / 30 / 0 ]
s

 −     2
[0 / 90 / 45 / 45 ]

s
  −    

Total thickness = 1.76 mm 

Figure 6. The sequences of layer orientation used 
 

The obtained results are plotted in the following Figure 7. 

 

 

 Figure 7. Evolution load-displacement curves of different layer orientations 

Upon analyzing these results, it was evident that the resistance to bending fracture 

gradually diminishes as the orientation angle deviates from 0°, in relation to the primary axis of 

reinforcement, ultimately reaching its minimum as it approaches a 90° angle. 

With these findings in mind, a numerical study was conducted utilizing finite element 

analysis on CFRP laminate composites, with a primary focus on varying layer orientations and 

their impact on mechanical properties. Consequently, these outcomes provide valuable data that 

can be harnessed for training a neural network to predict the peak load and maximum 

displacement under the influence of a bending load. 
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3. Improved ANN using Jaya and E-Jaya 

Artificial intelligence is moving towards new techniques for processing and representing 

knowledge that is closer to human reasoning. The Artificial Neural Network (ANN) model is a 

powerful training tool for simulating a variety of dynamic and static systems. This model has a 

multi-layered structure based on biological nervous systems, which are connected by nodes to 

three main layers, namely the input layer, hidden layers, and output layer. ANN is formed by the 

combination of neurons and processing nodes, the sum of the weighted inputs created by the 

neurons is illustrated in the following formulation: 

( )
1

n

ij i j

i

X w a b
=

= +                                            (1)

 

Where, ijw are the interconnect weights of the input data, ia is the number of data 

collected, and jb are the bias for the neuron (Figure 8).  

 

Figure 8. ANN structure to determine peak load and maximum displacement 

After creating the ANN structure, training with the input and output dataset is performed, 

to obtain the optimal weights and biases of the neurons. Various learning techniques are 

designed and used to adjust the optimal weights and biases for the ANN to reduce the difference 

between the actual and desired products. In this work, MATLAB software is used to make a 

connection between inputs and outputs using the Jaya and E-Jaya algorithm, to determine the 

peak load to starting failure and maximum displacement under the effect of a bending load (see 

Figure 8).  Many studies have previously used this technique, where more details can be found, 

such as Zara et al. (2023), who studied the detection of different crack lengths using several 

improved optimization techniques, such as enhanced Jaya ANN based on experimental natural 

frequency results. Also, Fahem et al. (2023) predicted the strength and tensile load reduction in a 

GFRP composite using Jaya’s improved algorithm. 

The peak load is taken as the output parameter, while the different types of orientation 

are selected as input. The parameters required for data training are shown in the following 

Table 2. 
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Table 2 

 Inputs and target parameters used in this work 

Parameter Minimum Maximum 
Number of 

collected data 

Input  

Layers orientation 41 types 41 

Target  

Peak load (N) 54.3928 1981.360 41 

Maximum 

displacement [mm] 
1.8790 7.3478 41 

As mentioned earlier, Jaya-ANN and E-Jaya-ANN were used. The optimal configuration 

of these networks, which presents an accurate prediction of the peak load and maximum 

displacement, consists of a hidden layer that includes 8 neurons. 

The regression curves of the current values of the peak load and the maximum displacement 

with respect to the predicted values are presented respectively in Figures 9 (a) and (b). 

 

  

E-Jaya-ANN (a)     Jaya-ANN 

  

                         E-Jaya-ANN (b) Jaya-ANN 

Notation: Used in this study: 1,000 populations-500 iterations. 

Figure 9. Regression analysis: (a) Peak load, (b) Maximum displacement 

The data points scattered around the dotted line inclined at 45° are very close to the line 

and show a strong correlation between the calculated values and the numerical values (FEM). 
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This indicates an appropriate prediction and confirms that the number of neurons selected for 

these techniques is appropriate. 

After training, the model is ready to predict the three studied scenarios. The obtained 

results are presented in the following Figures 10 (a)-(b) and 11. 

 

 

(a) 

    

(b) 

Figure 10. Predicted using 41 collected databases: (a) Peak load, (b) Maximum displacement 

From this result, it was observed that the most efficient and accurate predicted values can 

be found by E-Jaya-ANN with respect to the peak load and maximum displacement. For further 

evaluation, Figure 11 shows the errors between the actual and predicted peak load and maximum 

displacement for all scenarios using two optimization techniques. 
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Figure 11. Percentage error of predicted using 41 collected databases 

Tables 3 and 4 present the results of several scenarios of the predicted peak load and 

maximum displacement compared to the actual results, respectively, with the percentage of error 

between them. The parameters used for the analysis are the same for each optimization 

technique: 1,000 populations and 500 iterations. The obtained results are carried out using a 

computer with characteristics of 16 GB RAM memory and Intel(R.) Core(TM) i7-6700 HQ CPU 

@ 2.60 G. Hz 2.59 G. Hz. 

Table 3 

Percentage error of predicted JAYA-ANN and E-JAYA-ANN for Peak load scenarios 

 Type of 

orientation 
Optimization 

Peak load [N] 

Actual predicted Error (%) 

S
ce

 1
 

15 
Jaya-ANN 

1056.48 
1028.8 2.62 

E-Jaya-ANN 1057.8 0.125 

S
ce

 2
 

25 
Jaya-ANN 

892.20 
900.6 0.942 

E-Jaya-ANN 909.38 1.925 

S
ce

 3
 

35 
Jaya-ANN 

558.584 
515.577 7.699 

E-Jaya-ANN 565.196 1.183 

 

Table 4 

Percentage error of predicted JAYA-ANN and E-JAYA-ANN for Maximum displacement 

scenarios 

 
Type of 

orientation 
Optimization 

Maximum displacement [mm] 

Actual predicted Error (%) 

S
ce

 1
 

15 
Jaya-ANN 

2.46253 
2.3561 4.32198 

E-Jaya-ANN 2.41532 1.91713 



30            A. Zara et al. HCMCOUJS-Advances in Computational Structures, 14(1), 20-33 

 
Type of 

orientation 
Optimization 

Maximum displacement [mm] 

Actual predicted Error (%) 
S

ce
 2

 

25 
Jaya-ANN 

2.82217 
2.7117 3.91436 

E-Jaya-ANN 2.7917 1.079666 

S
ce

 3
 

35 
Jaya-ANN 

3.85076 
3.7422 2.81918 

E-Jaya-ANN 3.796 1.42206 

Based on the obtained results, we compared the two proposed optimization techniques; it 

was found that the E-Jaya-ANN technique is the most precise and efficient than the Jaya-ANN 

technique, with a reduced computation time. 

Table 5 summarizes the results of the CPU time for the two proposed optimization techniques. 

Table 5 

CPU time of Jaya-ANN, E-Jaya-ANN for eight hidden layer sizes 

 

 

 

 

 

 

The best calculation time is found in the E-Jaya-ANN technique improved over the Jaya-

ANN technique, with a time gap between them of 445 seconds for Peak load and 165 seconds for 

maximum displacement. 

4. Conclusions & recommendations 

Multi-layered composite structures experience various stress factors during their 

operational lifespan, potentially leading to performance degradation or deformation. In our 

research, we conducted a numerical investigation to assess the impact of geometric parameters 

on the maximum resistance of CFRP composites when subjected to a bending load. 

Prior to this analysis, we developed a Finite Element Model (FEM) using the ABAQUS 

commercial software to replicate experimental tests, thereby validating the accuracy of the 

numerical model. Subsequently, we introduced an enhanced approach, denoted as “E-Jaya-

ANN” which leverages improved artificial neural networks to predict the peak load and 

maximum displacement of these composites under bending loads. 

Finally, we conducted a comparative evaluation against the optimization method “Jaya-

ANN” to demonstrate the effectiveness of the proposed approach. In this work, the main 

conclusions are presented as follows: 

➢ The obtained results from the numerical and experimental tests are very similar, with 

a low percentage of error, which the precision of the numerical model implies. 

➢ Geometric modification (thickness, layer number, and fiber orientations) plays a very 

important role in laminated composite structures in determining the levels of peak load under 

static stress. This allows us to choose a structure resistant to the force applied in a specific field. 

➢ Comparing the results of the optimization techniques, E-Jaya-ANN provided slightly 

Hidden 

layer 
Optimization 

CPU Time (Sec) 

Peak force [N] 
Maximum 

displacement [mm] 

H = 8 
Jaya-ANN 4153.1709 3844.200724 

E-Jaya-ANN 3708.0249 3679.267123 



   A. Zara et al. HCMCOUJS-Advances in Computational Structures, 14(1), 20-33 31 

better prediction accuracy than Jaya-ANN, indicating a small advantage of E-Jaya-ANN over 

Jaya-ANN. 
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