
34 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

Metaheuristic optimization algorithms: An overview

Brahim Benaissa1*, Masakazu Kobayashi1, Musaddiq Al Ali1,

Tawfiq Khatir2, Mohamed El Amine Elaissaoui Elmeliani3

1Toyota Technological Institute, Nagoya, Japan
2University Centre Salhi Ahmed Naama, Naama, Algeria

3The University of Kitakyushu, Fukuoka, Japan
*Corresponding author: benaissa@toyota-ti.ac.jp

ARTICLE INFO ABSTRACT

DOI:10.46223/HCMCOUJS.

acs.en.14.1.200.2024

Received: November 6th, 2023

Revised: January 10th, 2023

Accepted: January 22nd, 2023

Keywords:

exploration; exploitation;

optimization; metaheuristic;

review

Metaheuristic optimization algorithms are versatile and

adaptable tools that effectively solve various complex optimization

problems. These algorithms are not restricted to specific types of

problems or gradients. They can explore globally and handle multi-

objective optimization efficiently. They strike a balance between

exploration and exploitation, contributing to advancements in

optimization. However, it’s important to note their limitations,

including the lack of a guaranteed global optimum, varying

convergence rates, and their somewhat opaque functioning. In

contrast, metaphor-based optimization algorithms, while intuitively

appealing, have faced controversy due to potential

oversimplification and unrealistic expectations. Despite these

considerations, metaheuristic algorithms continue to be widely used

for tackling complex problems. This research paper aims to explore

the fundamental components and concepts that underlie optimization

algorithms, focusing on the use of search references and the delicate

balance between exploration and exploitation. Visual

representations of the search behavior of selected metaheuristic

algorithms will also be provided.

1. Introduction

Metaheuristic optimization algorithms represent a versatile class of algorithms employed

to address intricate optimization problems spanning various domains (Abdel-Basset, Abdel-Fatah,

& Sangaiah, 2018). They are particularly useful when conventional optimization techniques,

including gradient-based methods or exact algorithms, prove unsuitable due to factors such as

problem complexity, non-linearity, or extensive search spaces. In the realm of metaheuristic

optimization, several essential characteristics and principles stand out. These algorithms

systematically explore the solution space through iterative processes, continuously enhancing the

initial solution or solution population over multiple iterations (Agrawal, Abutarboush, Ganesh, &

Mohamed, 2021).

The infusion of randomness into the search process serves as a distinguishing characteristic

of the majority of metaheuristic algorithms (Odili, 2018). This stochastic element plays a pivotal

role in reducing the likelihood of converging to local optima while simultaneously promoting a

more thorough exploration of the complete solution space. Most metaheuristic algorithms

prioritize the discovery of global optima or top-quality solutions across a wide range of the solution

space, as opposed to fixating solely on local optima (Yang, 2011a).

In contrast to gradient-based methods, metaheuristics do not depend on gradient

information from the objective function (Wong & Ming, 2019). This characteristic renders them

applicable to problems featuring non-differentiable, discontinuous, or noisy objective functions.

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 35

They exhibit versatility in their application, accommodating a wide spectrum of optimization

problems, including continuous, discrete, combinatorial, and mixed-integer optimization

(Dokeroglu, Sevinc, Kucukyilmaz, & Cosar, 2019). They can be utilized for both single-objective

and multi-objective optimization tasks. Among the array of metaheuristic optimization algorithms,

most early algorithms include:

Genetic Algorithms (GAs), drawing inspiration from the fundamental principles of natural

selection and genetics, are computational optimization techniques that leverage a population of

potential solutions (Holland, 1992). These algorithms employ genetic operators, including

crossover and mutation, in tandem with sophisticated selection mechanisms (Sivanandam &

Deepa, 2008). The overarching goal of GAs is to iteratively improve and evolve increasingly

optimal solutions as they progress through successive generations. By mimicking the mechanisms

of biological evolution, GAs harness the power of genetic diversity and survival of the fittest to

guide the search for high-quality solutions in complex optimization landscapes (Beasley, Bull, &

Martin, 1993). Through a process of recombination, mutation, and natural selection, GAs

continually refine and adapt the solution candidates, ultimately leading to the discovery of superior

solutions over time.

Particle Swarm Optimization (PSO) is an optimization algorithm that takes inspiration

from the coordinated behaviors observed in natural phenomena, specifically the collective

movements of birds in flocks (Kennedy & Eberhart, 1995). In the realm of PSO, a population of

particles dynamically explores the solution space. These particles undergo a continual process of

adjustment in their positions, a process that encompasses not only their individual best-known

solutions but also the incorporation of information gleaned from the best-known solutions of all

particles (Wang, Tan, & Liu, 2018). This approach encapsulates the idea that each particle

emulates the behavior of an individual entity within a larger group (Banks, Vincent, & Anyakoha,

2007). As they traverse the solution space, particles are not operating in isolation. Instead, they are

influenced by the collective wisdom of their peers, just as birds in a flock synchronize their

movements to optimize their group’s overall trajectory. In essence, PSO seeks to connect the

power of collaboration and information exchange among particles to steer them toward promising

regions of the solution space, ultimately facilitating the discovery of optimal or near-optimal

solutions to complex optimization problems (Blackwell & Kennedy, 2018).

Simulated Annealing (SA), which draws its inspiration from the annealing process in

metallurgy (Bertsimas & Tsitsiklis, 1993), commences its search with a metaphorical “high

temperature.” As the algorithm iteratively proceeds, it gradually reduces this temperature,

emulating the cooling of a material during the annealing process. This cooling process serves as a

pivotal component in SA, enabling it to escape from the confines of local optima (Van Laarhoven

& Aarts, 1987). Just as the gradual decrease in temperature in metallurgy allows a material’s

atomic structure to evolve towards a more stable and desirable state, the analogous reduction in

“temperature” in Simulated Annealing facilitates the exploration of the solution space, leading to

the discovery of superior and globally optimal solutions in complex optimization problems

(Busetti, 2003).

Ant Colony Optimization (ACO) derives its fundamental principles from the intricate

foraging behaviors exhibited by real ants (Dorigo & Stützle, 2003). This algorithm employs

artificial ants as agents that traverse a given graph or solution space in search of optimal solutions

(Dorigo, Birattari, & Stutzle, 2006). The navigation strategy of these synthetic ants closely mimics

the foraging patterns observed in nature, where real ants communicate through chemical signals

known as pheromones to guide one another toward the most promising paths (Dorigo & Blum,

2005). Similarly, in ACO, the artificial ants leave virtual pheromone traces as they explore, and

these traces play a pivotal role in influencing the decisions of subsequent ant agents. Through this

pheromone-based guidance mechanism, ACO effectively directs its exploration efforts toward

areas of the solution space that hold the potential for improved solutions, allowing for the

36 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

discovery of optimal or high-quality solutions in complex optimization scenarios (Dorigo &

Stützle, 2019).

Tabu Search (TS) relies on its short-term memory, which serves a dual purpose in the

algorithm (Gendreau & Potvin, 2005). This memory maintains a record of previously explored

‘tabu’ solutions to prevent redundant searches and avoid stagnation in the search process (Pirim,

Eksioglu, & Bayraktar, 2008). This unique feature of TS enhances the algorithm in multiple ways.

It improves computational efficiency by preventing revisits to already evaluated solutions and

enhances the overall robustness and versatility of TS. By avoiding redundant visits and promoting

diversification, TS explores the solution space more comprehensively, increasing the chances of

finding superior solutions (Hertz, Taillard, & De Werra, 1995). Differential Evolution (DE), a

population-based algorithm, operates by creating new candidate solutions by synthesizing

variations observed among individuals within the population (Lampinen, Price, & Storn, 2005).

This collective wisdom of the population members plays a crucial role in searching for optimal

solutions. The exchange of diverse perspectives within the population guides DE in exploring the

solution space and discovering refined solutions (Das, Mullick, & Suganthan, 2016).

Harmony Search (HS) is an optimization algorithm inspired by the collaborative and

iterative nature of music composition (Yang, 2009). In HS, a population of candidate solutions is

analogous to musical elements, and they undergo iterative adjustments, mirroring the fine-tuning

process in music composition (Geem, Kim, & Loganathan, 2001). This iterative approach allows

HS to continuously explore the solution space, aiming to optimize the encountered solutions. The

algorithm’s primary objective is to identify and converge towards improved solutions, akin to

musicians crafting harmonious compositions through creative improvisations. HS’s effectiveness

in optimizing complex problems lies in its ability to capture the essence of harmonization and

refinement from the musical world, resulting in solutions that exhibit precision and artistry, akin

to a well-composed musical piece (Geem, 2010).

The Arithmetic Optimization Algorithm (AOA) (Abualigah, Diabat, Mirjalili, Abd Elaziz,

& Gandomi, 2021) combines exploration and exploitation strategies to seek optimal or near-

optimal solutions. In the exploration phase, AOA employs high-dispersion mathematical

operations, including division and multiplication, to allow solutions to dynamically adapt their

positions based on random numbers and the Math Optimizer Accelerated (MOA) function.

Conversely, in the exploitation phase, the algorithm focuses on fine-tuning solutions through low-

dispersion operations like subtraction and addition, guided by random numbers and the MOA

function. AOA operates through multiple iterations, continually tracking the best solution and

terminating when specified conditions are met. This unique balance between exploration and

exploitation, driven by randomization and mathematical operations under the guidance of the

MOA function, distinguishes AOA as an effective method for optimizing complex problems.

The YUKI algorithm introduces a dynamic methodology for search space reduction,

focusing on establishing a localized search region around the best-identified solution (Benaissa,

Hocine, Khatir, Riahi, & Mirjalili, 2021). It continuously adjusts the search area’s dimensions

using inter-point distance as a key metric. The first point corresponds to the global best solution

with the lowest fitness value, while the second point, MeanBest, represents the centroid of the best

solutions found by each population member (Benaissa, Kobayashi, Kinoshita, & Takenouchi,

2023). Local boundaries are computed based on these reference points. The exploration population

extends its search beyond the local search area, with the population size iteratively adjusted based

on a conditional expression (Amoura, Benaissa, Al Ali, & Khatir, 2023). This approach ensures a

flexible adaptation of search space dimensions. Notably, the algorithm’s mathematical formulation

is straightforward and exhibits several key attributes, including a clear separation between

exploration and exploitation efforts, independence of search area sizes across dimensions, dynamic

fine-tuning of the local search area, and its contraction as solutions approach the optimum (Shirazi,

Khatir, Benaissa, Mirjalili, & Wahab, 2023).

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 37

Some of the controversies related to recently developed optimization algorithms is due to

the confusion in naming such as the Sinh cosh optimizer (Bai et al., 2023), the Sine cosine

algorithm (Mirjalili, 2016b), and the Gravitational search algorithm (Yazdani, Nezamabadi-Pour,

& Kamyab, 2014), Planet Optimization Algorithm (To, Le, Wahab, & Le, 2022), Solar system

algorithm (Zitouni, Harous, & Maamri, 2020), also the unclear connection between the metaphor

inspiration and the algorithm heuristics, within algorithms of similar names, such as Prey-predator

algorithm (Tilahun & Ong, 2015) and the hunting of animals: Hunting search (Oftadeh, Mahjoob,

& Shariatpanahi, 2010) and the recently developed algorithms, such as Hunter-prey optimization

(Naruei, Keynia, & Molahosseini, 2022), crocodiles hunting search (Kareem, 2022), The

archerfish hunting optimizer (Zitouni, Harous, Belkeram, & Hammou, 2022), and the Coati

Optimization Algorithm (Dehghani, Montazeri, Trojovská, & Trojovský, 2023).

These algorithms possess a significant degree of adaptability, allowing them to be tailored

to address specific optimization challenges. The choice of an appropriate metaheuristic is

contingent upon various factors, including the intrinsic attributes of the problem, the computational

resources at one’s disposal, and the user’s proficiency in customizing and fine-tuning the algorithm

to align with the precise requirements of the optimization task in question (Eiben & Smit, 2011).

2. The advantages of metaheuristic optimization algorithms

Metaheuristic optimization algorithms play a pivotal role in the realm of optimization due

to their inherent adaptability and efficacy in addressing intricate optimization challenges across

diverse domains. This discourse underscores their importance, elucidating the following salient

factors:

2.1. Agnostic to the problem being solved

Metaheuristic algorithms possess an exceptional attribute that makes them highly adaptable

and effective in a wide array of problem-solving scenarios (Yang, 2011a). They are characterized

by their remarkable versatility as they do not discriminate based on the nature of the optimization

problem (Yang, 2011b). This agnostic quality towards problem types is a valuable feature, as it

allows metaheuristic algorithms to transcend traditional boundaries and find applications in

various fields and domains.

For instance, in the realm of engineering (Kaveh, 2017), they can be used to optimize

complex design parameters for structures (Kaveh, 2014), systems (Gavrilas, 2010), or processes

(Al Thobiani et al., 2022). In logistics, these algorithms can help streamline supply chain

operations (Griffis, Bell, & Closs, 2012) and route planning (Tarantilis, Ioannou, Kiranoudis, &

Prastacos, 2005). Furthermore, they are equally at home in the world of finance (Soler-Dominguez,

Juan, & Kizys, 2017), where they can assist in portfolio optimization (Rahmani, Eraqi, &

Nikoomaram, 2019), risk management (Azevedo, Vale, Oliveira, & Khodr, 2010), or algorithmic

trading strategies (Kuo & Chou, 2021). Moreover, the data science domain benefits from

metaheuristic algorithms for tasks such as feature selection (Agrawal et al., 2021), hyperparameter

tuning (Ghandourah et al., 2023), or clustering analysis (Nanda & Panda, 2014).

2.2. Gradient independence

Unlike conventional methods, which heavily depend on the gradient information of the

objective function, metaheuristics are particularly well-suited for situations where computing

gradients is computationally expensive or even impossible (Gandomi, Yang, Talatahari, & Alavi,

2013). This attribute significantly broadens their applicability and makes them invaluable in

various optimization scenarios. In traditional optimization, algorithms like gradient descent or

conjugate gradient methods rely on the knowledge of the gradient, which provides the direction of

the steepest ascent or descent for the objective function (Ruder, 2016). However, in many real-

world problems, obtaining the gradient can be a challenging and resource-intensive task. This is

especially true for problems with complex, non-differentiable, discontinuous (Yang, 2010), or

38 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

noisy objective functions (Dang, Dardinier, Doerr, Izacard, & Nogneng, 2018).

Metaheuristics, on the other hand, are robust and versatile optimization approaches that do

not require gradient information. Instead, they explore the search space by iteratively and

intelligently sampling solutions (Hussain, Salleh, Cheng, & Shi, 2019). These methods often

employ heuristics, randomization, and search strategies that make minimal assumptions about the

problem’s mathematical properties. As a result, they can effectively tackle optimization problems

where gradients are unavailable, unreliable, or prohibitively expensive to compute.

2.3. Global search capability

These algorithms are specifically engineered to conduct a thorough exploration of the

solution space, with the primary objective of finding global optima or high-quality solutions

(Beheshti & Shamsuddin, 2013). This characteristic is of paramount importance, particularly when

dealing with optimization problems that feature multiple local optima (Jaszkiewicz, 2001). In such

problems, there are numerous points within the solution space where the objective function reaches

local optima, which are solutions that are the best in their immediate vicinity but may not be the

best overall. Traditional optimization methods, like gradient-based techniques, are susceptible to

getting stuck at these local optima because they rely on local information to guide their search

(Ruder, 2016).

Metaheuristic algorithms, on the other hand, employ a more versatile and global approach.

They systematically explore the entire solution space, often by combining various search

strategies, heuristics, or stochastic elements. This comprehensive exploration allows them to

transcend the limitations of local convergence and increases the likelihood of discovering the

global optima, which represents the best possible solution across the entire solution space

(Hussain, Salleh, Cheng, & Naseem, 2017).

2.4. Multi-objective optimization

Multi-Objective Optimization (MOO) is a crucial field in the domain of optimization,

where the primary focus is on simultaneously optimizing multiple, often conflicting objectives

(Dong & Liu, 2021). This is in contrast to traditional single-objective optimization, where the goal

is to find the optimal solution for a single objective. MOO is particularly pertinent in decision-

making contexts where the pursuit of one objective may negatively impact another, requiring

careful consideration of trade-offs (Sahali, Aini, Bouzit, Himed, & Benaissa, 2023).

The intrinsic adaptability of metaheuristics in handling MOO problems is instrumental in

addressing complex real-world challenges, such as Kansei design (Kobayashi, 2019) and design

optimization (Kobayashi, 2019). By providing a range of Pareto-optimal solutions that represent

different compromise options, metaheuristics assist decision-makers in making informed choices

that align with their preferences and priorities (Talbi, Basseur, Nebro, & Alba, 2012).

2.5. Exploration and exploitation

Exploration, as a fundamental component of metaheuristic algorithms, entails the

systematic and purposeful search for new and uncharted regions within the solution space (Xu &

Zhang, 2014). This phase aims to diversify the set of solutions under consideration, thereby

increasing the chances of discovering novel and potentially superior solutions (Hussain et al.,

2019). By venturing into unexplored territories, metaheuristics harness a degree of randomness

and adaptability, allowing them to escape local optima - suboptimal solutions that are locally

optimal but not globally so (Cuevas et al., 2021).

On the other hand, exploitation, the complementary facet of metaheuristics, involves

intensively scrutinizing promising regions within the solution space, where known high-quality

solutions have been identified. The goal here is to refine and enhance the existing solutions,

leveraging the acquired knowledge to achieve further improvements. This aspect of metaheuristics

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 39

is characterized by the ability to exploit historical information and focus the search toward the

most promising areas, thereby gradually converging toward optimal or near-optimal solutions

(Alorf, 2023).

The remarkable proficiency of metaheuristics lies in their ability to dynamically balance

the two aspects of exploration and exploitation. This dynamic equilibrium is essential in avoiding

premature convergence to suboptimal solutions, as a myopic emphasis on exploitation can result

in stagnation at local optima. Conversely, an excessive focus on exploration may lead to an

inefficient search that fails to capitalize on promising regions (Kobayashi, 2020). Metaheuristics,

through sophisticated control mechanisms and adaptive strategies, achieve a harmonious synergy

between these two facets, ensuring that the algorithm effectively explores the solution space,

discovers valuable solutions, and exploits the knowledge acquired during the search to enhance

the quality of solutions (Xu & Zhang, 2014).

2.6. Configurability and tuning

This high degree of configurability is instrumental in adapting metaheuristic algorithms to

address the intricacies of distinct problem contexts. By fine-tuning algorithmic parameters,

practitioners can optimize the behavior and performance of these heuristics to effectively tackle

the idiosyncrasies of the problem at hand (Lessmann, Caserta, & Arango, 2011). This ability to

adjust parameters can be crucial, as various problems exhibit diverse characteristics, such as search

space dimensions, objective functions, and constraints.

Research has shown that the configurability of metaheuristics can enhance their

adaptability (Huang, Li, & Yao, 2019). The judicious selection of parameter values allows

practitioners to strike a balance between exploration and exploitation, optimizing the search

process within the algorithm. Moreover, it permits the fine-grained adjustment of convergence

speed, thereby tailoring the algorithm to meet specific performance requirements and

computational resources. Some algorithms do not have tuning parameters (Syafruddin, Köppen,

& Benaissa, 2018).

2.7. Practical problem solving

The significance of these algorithms also lies in their ability to offer viable solutions to

problems that are typically characterized by high dimensionality, non-linearity, and a multitude of

constraints (Singh & Choudhary, 2021). Traditional optimization techniques often struggle to

provide optimal or near-optimal solutions within reasonable timeframes for such complex problem

instances. Metaheuristics, on the other hand, exhibit remarkable adaptability and robustness,

making them well-suited for scenarios where the search space is vast, and the objective function

is not easily defined or computationally expensive to evaluate.

In machine learning, the hyperparameter tuning problem (Birattari & Kacprzyk, 2009),

which involves configuring the parameters of machine learning algorithms to enhance predictive

performance, has been notably addressed through the application of metaheuristics, providing

valuable insights into the optimal hyperparameter configurations for diverse learning tasks.

2.8. Innovation

In the quest for improved metaheuristic algorithms, researchers embrace a

multidisciplinary approach that draws from various fields such as computer science, mathematics,

and biology (Velasco, Guerrero, & Hospitaler, 2023). This interdisciplinary synergy not only

enriches the theoretical foundation of metaheuristic algorithms but also enhances their practical

applicability across a broad spectrum of real-world problems.

The relentless pursuit of innovation in metaheuristic algorithms encompasses multiple

dimensions, including the development of new algorithmic structures, exploration of diverse

optimization landscapes (Chakraborty, Sharma, Saha, & Chakraborty, 2021), and the adaptation

40 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

of metaheuristic principles to emerging technological paradigms. By doing so, researchers

continually refine and expand the toolkit available to practitioners (Peres & Castelli, 2021).

Furthermore, the dynamic nature of this research field fosters a vibrant academic

community, with scholars engaged in ongoing discourse, collaboration, and knowledge exchange.

This ecosystem of intellectual exchange serves as a crucible for nurturing fresh ideas, refining

existing techniques, and validating the practicality of novel approaches through rigorous

experimentation and evaluation (Bolufé-Röhler & Chen, 2020).

3. The limitations of metaheuristic optimization algorithms

Metaheuristic algorithms stand as formidable and adaptable tools, designed to address

intricate optimization challenges (Chopard & Tomassini, 2018). However, an exhaustive

examination of their attributes reveals several limitations and constraints necessitating

consideration. These constraints encompass the following aspects:

3.1. Absence of global optimality guarantee

Global optimality, in the context of an optimization problem, signifies the identification of

the absolute best solution within the entire search space, as determined by the objective function

(Adam, Alexandropoulos, Pardalos, & Vrahatis, 2019). The absence of a global optimality

guarantee means that metaheuristic algorithms cannot ensure that the solution they converge upon

is the global optimum, i.e., the best possible solution achievable for the given problem.

One of the primary reasons for this absence of a global optimality guarantee is the nature

of metaheuristic algorithms themselves. These algorithms are often stochastic in nature and

operate by iteratively exploring and exploiting the search space (Du & Swamy, 2016). They rely

on heuristics, which are problem-specific rules or guidelines, to guide their search. As a result, the

solutions generated by these algorithms are contingent on the initial conditions, algorithm

parameters, and the inherent randomness in their search strategies. Consequently, the solutions

obtained may be influenced by these factors and may not consistently reach the ultimate pinnacle

of optimization.

Furthermore, the challenge of global optimality becomes particularly pronounced in cases

involving highly complex or multimodal search spaces. Complex search spaces exhibit a multitude

of local optima, making it challenging for metaheuristic algorithms to differentiate between local

and global optima (Kuyu & Vatansever, 2021). Multimodal search spaces feature multiple distinct

optima, further complicating the task of locating the global optimum. Metaheuristic algorithms

may inadvertently converge on a local optimum, which is a solution that is superior only within a

limited neighborhood in the search space, and fail to explore other regions where the global

optimum might reside (Singh & Singh, 2014).

3.2. Convergence speed

Convergence speed, a critical performance metric of metaheuristic algorithms, exhibits

significant variability contingent upon the nature of the problem being addressed and the particular

algorithm employed (Gutjahr, 2009). It is imperative to acknowledge that the convergence speed

is not a constant parameter; rather, it is intricately intertwined with the intricacies of the

optimization problem at hand and the chosen metaheuristic algorithm (Yang, 2011a).

For numerous optimization problems, especially those characterized by high-dimensional

or complex solution spaces, achieving convergence, wherein the algorithm reaches a satisfactory

solution, can be a protracted process. In such scenarios, metaheuristic algorithms often require a

substantial number of iterations before they are able to discover solutions that meet the predefined

quality criteria (Blum & Roli, 2003). The requirement for an extensive iteration count can result

in a considerable computational burden, entailing an extended computational runtime and

increased resource utilization.

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 41

The computational expenses incurred due to slow convergence can manifest in various

ways, including increased energy consumption, extended execution times, and greater

computational resource utilization, such as CPU and memory. Therefore, understanding the

convergence speed and its implications on computational costs is paramount for practitioners and

researchers when selecting and configuring metaheuristic algorithms for specific optimization

tasks (Chopard & Tomassini, 2018).

3.3. Parameter tuning

The process of identifying optimal parameter settings for metaheuristics can be

characterized as a challenging and time-intensive endeavor. It involves a systematic exploration

of the parameter space, aiming to strike a balance between exploration and exploitation. This

balance is essential for achieving efficient convergence and high-quality solutions. The search for

suitable parameter values often necessitates extensive experimentation, simulation, and empirical

evaluation.

Researchers and practitioners frequently employ various optimization techniques,

including running the metaheuristic with different combinations of parameter values, evaluating

the performance of each configuration, and selecting the one that yields the best results according

to predefined criteria (Osaba et al., 2021). Furthermore, the quest for optimal parameter settings is

compounded by the fact that the choice of parameters can depend on the specific problem instance

or dataset at hand. Consequently, it may be necessary to perform parameter tuning for each unique

problem to achieve optimal performance, making it a laborious and resource-intensive process

(Huang et al., 2019).

3.4. Black-box nature

The term “Black-Box” in the context of metaheuristic optimization algorithms implies that

these methods operate without a comprehensive understanding of the problem being solved.

Unlike traditional mathematical optimization methods, such as linear programming or integer

programming, which rely on a detailed problem formulation, metaheuristics approach problems

without requiring a priori knowledge of the problem structure (Sala & Müller, 2020). This feature

is particularly advantageous in scenarios where problem formulations are complex or unknown,

and in cases where the objective function might be non-differentiable, discontinuous, or

computationally expensive to evaluate. Researchers and practitioners may find it challenging to

interpret the results, make informed adjustments to the optimization process, or validate the quality

of solutions generated by the metaheuristic algorithms (Omidvar, Li, & Yao, 2021).

Despite these inherent limitations, the enduring utilization of metaheuristic optimization

algorithms persists due to their aptitude for tackling complex problems, for which precise or

specialized methods remain elusive. Researchers and practitioners commonly employ an empirical

approach, experimenting with diverse metaheuristics and parameter configurations to discern

optimal solutions specific to their individual optimization challenges (Gallagher, 2016).

4. The controversy of metaphor-based optimization algorithms

Metaphor-based metaheuristic algorithms leverage metaphorical concepts and analogies

from the natural world to solve complex problems. By drawing parallels between real-world

phenomena and optimization processes, metaphor-based metaheuristics provide a unique and

intuitive approach to tackling intricate, multi-dimensional, and often non-deterministic

optimization challenges (Sörensen, 2015). This innovative paradigm offers a bridge between

human intuition and algorithmic problem-solving, enabling more effective and holistic problem-

solving strategies. In this section, we delve into the controversy surrounding the use of metaphors

in the context of metaheuristic algorithms.

42 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

4.1. Oversimplification

While metaphors undeniably enhance the accessibility of algorithms, rendering them more

approachable and comprehensible to a wider audience, this very accessibility may inadvertently

lead to the oversimplification of the underlying algorithmic intricacies. In so doing, metaphors risk

fostering misunderstandings and misconceptions among practitioners and researchers, who may

be enticed to embrace a superficial understanding of the algorithm’s functionality (Chica, Pérez,

Cordon, & Kelton, 2017).

The challenge here lies in striking a delicate balance between the accessibility facilitated

by metaphors and the preservation of algorithmic intricacies and nuances. The risk is that the

metaphorical framework may emphasize the overarching principles and analogies, potentially

obscuring the intricate details that are critical for precise comprehension of algorithmic operations.

Consequently, this approach may impart an incomplete or erroneous understanding of the

algorithm, which could hinder its effective application and limit its potential for addressing

complex optimization challenges (Tovey, 2018).

4.2. Misleading expectations

Metaphors, which are often employed to conceptualize and communicate complex

optimization processes, can inadvertently create an expectation that these optimization algorithms

will closely emulate the behavior of their metaphorical counterparts in real-world scenarios

(Camacho‐Villalón, Dorigo, & Stützle, 2023). This is a reasonable presumption given that

metaphors are designed to bridge the gap between abstract mathematical concepts and concrete,

real-world phenomena. However, the crux of the issue lies in the fact that this presumption

frequently does not align with the reality of algorithmic performance (Aranha et al., 2022).

4.3. Metaphor algorithm names

One of the primary concerns is that the naming of these algorithms doesn’t always reflect

the underlying principles or strategies they employ. Researchers sometimes choose names that are

catchy or trendy, but these names may not adequately convey the uniqueness or innovation of the

algorithm (Camacho-Villalón, Dorigo, & Stützle, 2022). As a result, it becomes challenging to

discern what sets one algorithm apart from another, hindering the efficient selection of an

appropriate algorithm for a specific problem. Furthermore, the similarity in names can lead to

misunderstandings and misattribution of ideas. It can create a situation where algorithms with

similar-sounding names are assumed to be closely related or even identical when, in fact, they may

have distinct design philosophies, parameters, or performance characteristics, and the opposite can

be true (Du & Swamy, 2016).

5. Metaheuristic algorithmic framework

The fundamental structural components governing the operation of these algorithms are

succinctly outlined as follows:

5.1. Initialization

At the outset of the algorithm, it begins with the creation of an initial solution or a

population of potential solutions. These starting points can be generated in one of two ways:

In this step, the algorithm randomly generates the initial solutions. This randomness can

help explore a wide range of possible solutions, making it especially useful in situations where

there is little prior knowledge about the problem. Alternatively, the algorithm may utilize problem-

specific heuristics to create the initial solutions, leveraging domain expertise and problem-specific

insights to guide the initial solution-generation process.

Once the initial solutions are generated, the algorithm then proceeds to evaluate their

quality using an objective function. The objective function quantifies how well each solution

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 43

performs with respect to the problem’s goals and constraints. The algorithm aims to optimize this

objective function, typically by adjusting the solutions iteratively (Osaba et al., 2021).

In the context of optimization algorithms like Particle Swarm Optimization (PSO), the

algorithm uses strategies that rely on search references to update and refine the solutions over time.

The Global Best: In PSO, each particle maintains a “global best” reference, which represents the

best solution found by any particle in the entire swarm. This global best serves as a guide for the

entire swarm, influencing the movement of individual particles towards a potentially better

solution. And Personal Best: In addition to the global best, each particle maintains its “personal

best” reference, which is the best solution it has found during its individual journey. This personal

best reference guides the particle’s movement, helping it explore and exploit the solution space

efficiently (Engelbrecht, 2013).

These references are different from other algorithms, such as: Tabu Search maintains a

tabu list of recently visited solutions. Solutions on this list are considered “tabu,” and the algorithm

avoids revisiting them. The tabu list serves as a search reference to prevent cycling (Pirim et al.,

2008). In Differential Evolution, a parent vector is chosen as a reference for creating new candidate

solutions. The mutation and crossover operators are applied to the parent vectors to generate new

solutions (Price, Storn, & Lampinen, 2006). In Harmony Search, a memory matrix stores the best

solutions found so far. During the search, the algorithm creates new solutions by improvising based

on the values in the memory matrix. The memory matrix serves as a reference for creating new

harmonies that aim to improve upon past solutions (Alia & Mandava, 2011).

In Ant Colony Optimization, pheromone levels on paths represent references. Ants deposit

pheromones on paths they explore, and other ants are more likely to follow paths with higher

pheromone levels. This reinforces the exploration of promising paths and leads to the discovery of

better solutions over time (Ribeiro, Hansen, Maniezzo, & Carbonaro, 2002). YUKI algorithm

identifies the best solution found so far, defined as the point with the minimum fitness value. This

solution is crucial as it represents the center of the local search area (Al Ali, Shimoda, Benaissa,

& Kobayashi, 2023). And the MeanBest is calculated as the center of the best solutions found so

far by each member of the population. It acts as a reference point to determine the size and location

of the local search area (Khatir et al., 2023).

By continuously updating solutions based on these references and following specific

algorithms’ strategies, the optimization process refines the solutions, gradually converging

towards optimal or near-optimal solutions to the problem.

5.2. Objective function assessment

Objective Function Assessment is a crucial step in various optimization algorithms and

problem-solving approaches. It involves evaluating the quality of initial solutions or those

present in a population, primarily through the use of an objective function. This objective

function serves as a critical metric that quantifies how well each solution aligns with the primary

optimization goal. This goal could involve either maximizing or minimizing a specific criterion,

such as a cost or fitness function, depending on the nature of the problem being addressed

(Halim, Ismail, & Das, 2021).

In essence, the objective function acts as a guiding compass for the algorithm, helping it

discern the direction in which it should steer the search for better solutions. By quantifying the

degree of alignment between a solution and the desired objective, it provides a means of ranking

and comparing different solutions. This allows the algorithm to prioritize and select those solutions

that show the most promise in achieving the optimization goal. The algorithm relies on this

function to make informed decisions at each iteration, iteratively refining the solutions in pursuit

of the overarching optimization objective.

44 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

5.3. Iterative refinement

The core essence of a metaheuristic optimization algorithm revolves around a cyclic

progression characterized by the following steps (Dokeroglu et al., 2019):

1. Solution Selection: In the initial phase of an optimization algorithm, denoted as Solution

Selection, the algorithm makes critical decisions concerning the choice of solutions from the

current population for further refinement or evolution. The selection strategy adopted in this phase

is contingent upon the particular optimization algorithm under consideration. Various methods

have been proposed in the literature, encompassing techniques such as roulette wheel selection,

tournament selection, and rank-based selection. The chosen solutions are deemed as potential

candidates for the subsequent optimization iterations.

2. Solution Modification: Following the Solution Selection phase, selected solutions

undergo a series of transformative operations known as Solution Modification. These operations

emulate natural or problem-specific processes, aiming to generate new candidate solutions with

potentially improved qualities. Notable instances of such operations include crossover and

mutation in Genetic Algorithms, as well as particle movement in Particle Swarm Optimization.

Crossover involves combining genetic material from two or more parent solutions to create

offspring, while mutation introduces random changes to a solution. The selection and

configuration of these operators play a pivotal role in the algorithm’s efficacy.

3. Evaluation: Subsequent to Solution Modification, the algorithm proceeds to the

Evaluation phase. During this stage, the newly generated or modified solutions are subjected to a

rigorous assessment using a predefined objective function. The primary objective is to ascertain

the quality and fitness of these solutions in the context of the optimization problem. The objective

function encapsulates the optimization problem’s goals, constraints, and requirements, and it

provides a quantitative measure of how well a solution aligns with the problem’s objectives.

4. Solution Replacement: Upon completing the Evaluation phase, the updated solutions

are integrated back into the existing population in the Solution Replacement step. This integration

may involve the replacement or repositioning of some of the pre-existing solutions based on

various criteria, such as fitness, diversity enhancement, or algorithm-specific rules. This phase is

pivotal for maintaining population diversity and promoting the convergence of the algorithm

toward optimal or near-optimal solutions.

5. Termination Criteria: Throughout the optimization process, the algorithm continually

monitors predefined Termination Criteria to determine whether the search process should be

concluded. Commonly employed termination criteria encompass reaching a maximum number of

iterations, attaining a predefined target quality threshold, or encountering stagnation in the

optimization process. It is imperative to balance computational resources with the search for better

solutions, and the careful selection of termination criteria plays a vital role in achieving this balance.

5.4. Balancing exploration and exploitation

Exploration refers to the systematic diversification of search space exploration in order to

discover novel and potentially superior solutions, while exploitation emphasizes the focused

refinement and optimization of promising solutions (Morales-Castañeda, Zaldivar, Cuevas,

Fausto, & Rodríguez, 2020). Achieving an optimal trade-off between these two strategies is

imperative for the success of iterative algorithms in various applications (Halim et al., 2021).

Conversely, the exploitation involves the concentrated refinement and optimization of

solutions that have exhibited promise in terms of their quality or effectiveness. This entails the

allocation of resources and effort towards fine-tuning and maximizing the utility of these solutions.

Exploitation aims to capitalize on the known strengths of existing solutions, leveraging their

attributes to their fullest potential.

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 45

The challenge of balancing exploration and exploitation arises from the inherent trade-off

between these strategies. Overemphasis on exploration can lead to a lack of focus and scattered

efforts, potentially delaying the convergence to optimal solutions. On the other hand, an excessive

bias towards exploitation may result in premature convergence to suboptimal solutions, limiting

the algorithm’s ability to discover superior alternatives (Hussain et al., 2019).

5.5. Memory and diversity maintenance

Memory retention within metaheuristics pertains to the preservation and utilization of

information related to previously explored solutions. The concept of memory is preserved in

various ways, including the storage of promising solutions, historical search trajectories, or

knowledge about the problem structure. This retention of past knowledge serves the purpose of

facilitating informed decisions during the search process, allowing the algorithm to capitalize on

insights gained from prior explorations. These insights may manifest as adaptive parameters,

guiding operators, or informed perturbation strategies, which collectively enhance the algorithm’s

ability to exploit promising regions of the solution space (Akay, Karaboga, & Akay, 2022).

On the other hand, diversity maintenance encompasses strategies employed to ensure that

the solution population generated and manipulated by the metaheuristic remains sufficiently

diverse (Castillo & Segura, 2020). The diversity of solutions is a vital aspect in the context of

optimization, as it guards against premature convergence to local optima. Diverse populations

provide the algorithm with a broader exploration capability, as they offer a wider array of

perspectives on the solution space. To this end, various mechanisms such as diversification

operators, population diversity measures, and selection schemes designed to preserve and enhance

diversity, are integrated into metaheuristics (Parouha & Verma, 2021).

6. Gradient-based algorithms vs. Metaheuristic algorithms in optimization

Gradient-Based Optimization methods present several merits in optimization. They exhibit

notable advantages, particularly their rapid convergence, especially when dealing with smooth and

convex objective functions (Daoud et al., 2023).

Moreover, their suitability for high-dimensional problems, coupled with their amenable

parallelization, renders them highly efficient in resource-rich computational settings. Nonetheless,

these techniques suffer from noteworthy limitations, including susceptibility to local minima

entrapment, thereby rendering them less amenable for non-convex functions. Furthermore, they

mandatorily necessitate the availability of gradient information, a requirement that may not always

be met in various problem domains (Dalla, da Silva, Dutra, & Colaço, 2021).

Conversely, Metaheuristic Algorithms provide a distinct set of advantages. They excel in

solving intricate, non-convex problems characterized by discontinuous or noisy objective

functions. Metaheuristic algorithms, characterized by their versatility, do not rely on gradient

information, extending their applicability to a broader spectrum of optimization challenges.

Notably, these algorithms exhibit proficiency in exploring diverse solutions, albeit at the cost of

slower convergence rates for simpler functions, often necessitating substantial computational

resources (Khanduja & Bhushan, 2021). Table 1 provides a Comparative Analysis of Optimization

Algorithms: Gradient-Based vs. Metaheuristic Approaches

Applications well-suited for Gradient-Based Optimization encompass diverse tasks such

as training machine learning models, deep learning parameter tuning (Zhang, 2019), and select

scientific simulations (Issa & Mostafa, 2022). In contrast, as discussed previously, Metaheuristic

Algorithms prove particularly adept in addressing an array of complex objective functions and

extensive search spaces (Agrawal et al., 2021).

46 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

Table 1

A comparative analysis of optimization algorithms: Gradient-based vs. Metaheuristic approaches

Algorithm aspect Gradient-based algorithms Metaheuristic algorithms

Objective Function Typically differentiable
Can be non-differentiable,

complex, or black-box

Search Space

Exploration

Systematic and focused on local

optima

Exploratory and aim to escape

local optima

Initialization
Reliant on initial parameter

guess

Often uses random or heuristic

initial solutions

Update Rules
Gradient-based with an explicit

formula

Diverse strategies and operations

specific to the algorithm

Termination Criteria
Convergence-based (e.g.,

gradient norm or target value)
Diverse termination conditions

Deterministic vs.

Stochastic
Deterministic

Often stochastic with random or

heuristic elements

Problem Applicability
Well-suited for differentiable

functions

More versatile and applicable to

a broader range of problems

Use of Gradient

Information
Requires gradient information

Does not rely on gradient

information

Table 2

Gradient-based vs. Metaheuristic - advantages and disadvantages

 Gradient-based algorithms Metaheuristic algorithms

- Converge faster for smooth,

convex functions

- Suitable for complex, non-convex

problems

Advantages
- Well-suited for high-

dimensional problems
- No need for analytical derivatives

 - Good for local optimization
- Can handle discontinuous or noisy

functions

 - Easily parallelizable - Exploration of diverse solutions

 - Can get stuck in local minima
- Slower convergence on simple

functions

Disadvantages - Sensitive to initial conditions - Difficulty in fine-tuning parameters

- Not suitable for discrete

optimization

- Lack of theoretical convergence

guarantees

- Assumes differentiability of the

objective
- Computationally intensive

The selection between these two approaches predominantly hinges on the inherent nature

of the optimization problem at hand and the availability of computational resources (Dalla et al.,

2021). Table 2, highlights the advantages and disadvantages of Gradient-Based Optimization and

Metaheuristic-based Optimization.

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 47

7. Metaheuristic techniques for solution generation

Metaheuristic algorithms encompass versatile optimization approaches applicable across

diverse problem domains. These algorithms employ a variety of solution-generation techniques to

traverse the solution space in pursuit of optimal or near-optimal solutions. Table 3 showcases a

selection of the used solution-generation techniques in metaheuristic algorithms.

The table illustrates a wide array of approaches employed in optimization algorithms.

Some, such as the Genetic Algorithm and Particle Swarm Optimization, are based on population-

based methodologies, while others, such as Simulated Annealing and Tabu Search, adopt

neighborhood search strategies.

Additionally, the table underscores the prevalence of nature-inspired algorithms, with

examples like Ant Colony Optimization and Firefly Algorithm emulating natural behaviors like

ant foraging and firefly attraction, indicating a burgeoning interest in bio-inspired and evolutionary

techniques for optimization challenges. Moreover, the inclusion of the YUKI algorithm, which

employs a problem-specific approach involving exploration and exploitation, suggests that certain

algorithms may be tailored to specific problem domains. Lastly, the algorithms vary in complexity,

with Genetic Algorithm and Differential Evolution incorporating intricate processes like crossover

and mutation, in contrast to simpler operations like perturbation found in Simulated Annealing.

8. Metaheuristic techniques for balancing exploration and exploitation

In each of these algorithms, the trade-off between exploration and exploitation is achieved

through unique mechanisms, such as probabilistic models, dynamic parameters, and population-

based behaviors. The specific strategies employed by these algorithms determine their efficiency

in solving different optimization problems. Balancing these two aspects effectively is a key

challenge, and researchers often customize these algorithms to address the requirements of specific

problem domains. The flexibility of metaheuristic algorithms in striking this balance makes them

valuable tools in optimization tasks across various fields. Table 4 shows some distinctive

Exploration and Exploitation behaviors that characterize each algorithm’s performance.

The Table 4 encompasses examples of popular optimization algorithms. This assortment

underscores the extensive spectrum of techniques utilized in solving optimization challenges. The

table underscores the central trade-off between exploration, the quest for novel solutions, and

exploitation, the refinement of known, promising solutions. Each algorithm employs distinctive

strategies to strike a balance between these aspects.

Additionally, the table delineates the specific techniques or attributes of each algorithm

that contribute to their exploration and exploitation methods. For instance, Genetic Algorithms

employ crossover and mutation to explore diverse populations and favor individuals with superior

fitness, while Simulated Annealing accepts suboptimal solutions to shift towards exploiting the

best ones. This adaptability allows their exploration and exploitation strategies to solve various

problems. Such as, Ant Colony Optimization and Bee Colony Optimization, leverage both

exploration and exploitation by permitting individuals to explore new paths while reinforcing

exploitation through mechanisms like pheromone deposition or information sharing.

Table 3

Optimization algorithms and their solution-generation techniques

Algorithm Solution-generation technique

Genetic Algorithm (Holland, 1992)
Uses genetic operators like Crossover and Mutation to

evolve solutions

48 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

Algorithm Solution-generation technique

Particle Swarm Optimization

(Kennedy & Eberhart, 1995)

Generates solutions by adjusting particle movement

and updating

YUKI algorithm (Benaissa et al.,

2021)

Create a random distribution of points inside the local

search area, and allocate part of it to exploration and

the other part to exploitation

Simulated Annealing (Van

Laarhoven & Aarts, 1987)
Perturbs solutions based on a temperature schedule

Ant Colony Optimization (Ribeiro et

al., 2002)

Constructs solutions probabilistically by simulating ant

behavior

Tabu Search (Hertz et al., 1995) Explores neighborhoods guided by a tabu list

Harmony Search (Geem et al., 2001)
Generates solutions based on harmony memory and

composition

Differential Evolution (Lampinen et

al., 2005)

Creates solutions using mutation and crossover

operations

Firefly Algorithm (Yang & Slowik,

2020)

Generates solutions based on firefly attraction and

movement

Gravitational Search Algorithm

(Rashedi, Nezamabadi-Pour, &

Saryazdi, 2009)

Simulates particle movement in a gravitational field to

find solutions

Cuckoo Search (Gandomi, Yang, &

Alavi, 2013)

Generates solutions using Lévy flights and nest

replacement

Bat Algorithm (Yang & Gandomi,

2012)
Updates solutions based on frequency and loudness

Grey Wolf Optimizer (Mirjalili,

Mirjalili, & Lewis, 2014)
Finds solutions by encircling and attacking prey

Artificial Bee Colony (Karaboga,

2010)

Utilizes employed bees, onlooker bees, and scout bees

to find solutions

Teaching-Learning-Based

Optimization (Rao, Savsani, &

Vakharia, 2011)

Involves two phases, teacher and learner phases for

solution generation

Sinh Cosh Algorithm (Bai et al.,

2023)
Represents solutions using sinusoidal waves

The arithmetic optimization

algorithm (Abualigah et al., 2021)

Modify existing solutions using arithmetic operators

Division, Multiplication, Subtraction, and Addition

Table 4

Exploration and exploitation strategies in optimization algorithms

 Algorithm Name Exploration Exploitation

Genetic Algorithms

(Holland, 1992)

- Creation of diverse

populations

- Favoring individuals with better

fitness

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 49

 Algorithm Name Exploration Exploitation

- Crossover and mutation

operations

- Concentrating search efforts on

promising solutions

Particle Swarm

Optimization

(Kennedy & Eberhart,

1995)

- Using social and cognitive

learning

- Converging toward best-known

solutions

- Guiding particles to explore

different areas

- Adjusting positions based on

experiences

YUKI algorithm

(Benaissa et al., 2021)

- Using historical personal best

locations

- Exploitation toward best-known

solutions

- Allocate part of the

population to explore outside

the local search area

- Adjusting the size of the local

search area based on the progress of

the search

Simulated Annealing

(Van Laarhoven &

Aarts, 1987)

- Allowing acceptance of

worse solutions

- Shifting toward exploiting the best

solutions

- With decreasing probability
- Converging toward a global

optimum

Ant Colony

Optimization (Ribeiro

et al., 2002)

- Allowing ants to explore new

paths

- Reinforcing exploitation through

pheromone deposition

- Based on pheromone

evaporation and choices

- Guiding ants toward successful

solutions

Tabu Search (Hertz et

al., 1995)

- Preventing revisiting

explored solutions

- Considering previously visited

solutions if showing potential

- Promoting exploration
- For improvement, leading to

exploitation

Differential Evolution

(Lampinen et al.,

2005)

- Generating diverse trial

solutions

- Preferring individuals with better

fitness

- Using differential operators
- Promoting exploitation of

promising solutions

Harmony Search

(Geem et al., 2001)

- Introducing randomness in

note generation

- Leading to exploitation by

memory and pitch adjustments

- Emphasizing exploration - Emphasizing promising harmonies

Firefly Algorithm

(Yang & Slowik,

2020)

- Random movement of

fireflies

- Converging toward the brightest

fireflies

- Exploring different areas
- Promoting exploitation through

light intensity

Bat Algorithm (Yang

& Gandomi, 2012)

- Using echolocation for

random exploration

- Locating and exploiting the best

solutions as the algorithm

progresses

- Emitting frequency-tuned

pulses

- Adjusting emission intensity and

loudness

50 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

 Algorithm Name Exploration Exploitation

Glowworm Swarm

Optimization

(Krishnanand &

Ghose, 2009)

- Modeling the behavior of

glowworms and their spatial

awareness for exploration

- Promoting the exploitation of

brighter neighbors

Krill Herd Algorithm

(Gandomi & Alavi,

2012)

Employing random movements

of krill to explore different

areas.

Attracting krill toward promising

solutions through interactions

Bee Colony

Optimization

(Karaboga, 2010)

- Random selection of bees for

exploration

- Sharing information and

exploiting best solutions with other

bees

- Visiting different solutions
- Promoting exploitation through

information sharing

Dragonfly Algorithm

(Mirjalili, 2016a)

- Mimicking the hunting

behavior of dragonflies for

exploration

- Concentrating on capturing the

most promising prey

Jaya Algorithm (Rao,

2016)

Focusing the search away from

the best-known solution

Focusing on improving the best-

known solutions

Gravitational Search

Algorithm (Rashedi et

al., 2009)

- Modeling gravitational

attraction of masses

- Converging toward promising

solutions

- Moving masses randomly to

explore

- Promoting exploitation through

gravitational attraction

The arithmetic

optimization

algorithm (Abualigah

et al., 2021)

- Diversify the search by

exploring different regions

- Choice of which operator to use is

based on random values

- Move away from the current

best solution

- Intensively searches for the near-

optimal solution

Monkey Search

(Mucherino & Seref,

2007)

- Mimicking the climbing and

exploration behavior of

monkeys

- Concentrating on the best-known

solutions found during climbing

Vortex Search

Algorithm (Doğan &

Ölmez, 2015)

Applying a vortex concept to

generate diversity in the search

Concentrating on improving

solutions within the vortex

Termite life cycle

optimizer (Le, To,

Theraulaz, Wahab, &

Le, 2023)

- Create reproductive termites

when workers are not

successful

- Soldiers are responsible for

exploiting known promising

solutions

- Randomness to the

movement and decision-

making of termites

- Focusing on the best-known

solution

Figures 1 to 5 depict the search behaviors of five distinct optimization algorithms, namely

Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Differential Evolution (DE),

Teaching-Learning-Based Optimization (TLBO), and the YUKI algorithm. Two distinct test

functions are employed in this analysis: the unimodal sphere function (denoted as Function (a)),

which is particularly amenable to exploitation-oriented algorithms, and the multimodal Schwefel

function (denoted as Function (b)), which is more suitable for exploration-oriented algorithms.

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 51

In each algorithmic evaluation, 500 particles are utilized, and the search process is iterated

for a duration of 10 iterations. The primary objective is to visualize and assess the progressive

evolution of the search process. These figures provide a comprehensive representation of the

spatial distribution of the population of solutions at each iteration, offering insights into the extent

of the search space explored by the population throughout the optimization process.

In PSO, exploration occurs as particles move randomly through the solution space, and

exploitation is promoted through movement towards better solutions (Figure 1). Similarly, in

GWO algorithm, wolves within the pack take on the role of explorers, venturing into uncharted

solution spaces, while others act as exploiters, refining and improving upon the best solutions

identified so far (Figure 2). In DE, however, individuals in the population are subjected to a

mutation operation that creates a new candidate solution by taking the difference between two

existing solutions and adding it to a third solution. Additionally, DE also uses strategies for

recombination and selection to reinforce the exploitation of promising solutions (Figure 3).

(a)

(b)

Figure 1. Particle Swarm Optimization search behavior, average computational time 0.092s

(a)

52 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

(b)

Figure 2. Grey Wolf Optimizer search behavior, average computational time 0.081s

(a)

(b)

Figure 3. Differential Evolution search behavior, average computational time 0.085s

(a)

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 53

(b)

Figure 4. Teaching-Learning-Based Optimization search behavior,

average computational time 0.181s

(a)

(b)

Figure 5. YUKI Algorithm search behavior, average computational time 0.083s

During the teaching phase of the TLBO algorithm, individuals with better solutions “teach”

or share their knowledge with those who have poorer solutions. This knowledge transfer

encourages exploitation, as it helps the population converge towards better solutions. In the

learning phase, individuals learn from their peers and adjust their solutions based on the

information received. This phase fosters exploration, as individuals incorporate new ideas and

approaches from others into their solutions, potentially leading to the discovery of novel and

improved solutions, these rules encourage the search behavior shown in Figure 4. YUKI algorithm

performs both tasks simultaneously by focusing part of the population to search around the best

solution found so far and the rest to explore outside the local search area, which develops into a

powerful search behavior as seen in Figure 5.

9. Conclusion

This paper provides a comprehensive exploration of the core components, techniques, and

54 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

strategies inherent to metaheuristic algorithms. It underscores the pivotal role played by the

delicate equilibrium between exploration and exploitation in optimizing solutions. Moreover, it

conducts a discerning comparison between the merits and limitations of metaheuristic algorithms

and gradient-based optimization methods, offering insights into their applicability within diverse

problem domains and under varying resource constraints.

Examining a diverse range of solution-generation techniques across various algorithms

emphasizes their remarkable versatility and adaptability. These methodologies prove highly

effective in tackling a broad spectrum of optimization challenges. Additionally, the paper

examines the specific strategies employed by these algorithms. Adding visual representations of

how certain metaheuristic algorithms behave enhances our grasp of how they work in both research

and real-world applications. These visuals offer a practical insight into the processes involved.

In the future direction of metaheuristic optimization algorithms, it is imperative to address

and overcome the identified limitations to enhance their efficacy. Encouraging a shift towards

simplicity and a clear theoretical foundation may prove beneficial in mitigating challenges. By

emphasizing a more straightforward and theoretically grounded approach, future developments in

metaheuristic algorithms can strive to provide solutions that are not only effective in addressing

complex optimization challenges but also more interpretable and easier to configure.

References

Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic algorithms: A

comprehensive review. Computational Intelligence for Multimedia Big Data on the Cloud

with Engineering Applications, 185-231.

Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic

optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376,

Article 113609.

Adam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No free lunch

theorem: A review. Approximation and Optimization: Algorithms, Complexity and

Applications, 57-82.

Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms

on feature selection: A survey of one decade of research (2009-2019). Ieee Access, 9, 26766-

26791.

Akay, B., Karaboga, D., & Akay, R. (2022). A comprehensive survey on optimizing deep learning

models by metaheuristics. Artificial Intelligence Review, 1-66.

Al Ali, M., Shimoda, M., Benaissa, B., & Kobayashi, M. (2023). Non-parametric optimization for

lightweight and high heat conductive structures under convection using metaheuristic

structure binary-distribution method. Applied Thermal Engineering, Article 121124.

Al Thobiani, F., Khatir, S., Benaissa, B., Ghandourah, E., Mirjalili, S., & Wahab, M. A. (2022). A

hybrid PSO and Grey Wolf Optimization algorithm for static and dynamic crack

identification. Theoretical and Applied Fracture Mechanics, 118, Article 103213.

Alia, O. M., & Mandava, R. (2011). The variants of the harmony search algorithm: An overview.

Artificial Intelligence Review, 36, 49-68.

Alorf, A. (2023). A survey of recently developed metaheuristics and their comparative analysis.

Engineering Applications of Artificial Intelligence, 117, Article 105622.

Amoura, N., Benaissa, B., Al Ali, M., & Khatir, S. (2023). Deep neural network and YUKI

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 55

algorithm for inner damage characterization based on elastic boundary displacement BT -

Proceedings of the International Conference of Steel and Composite for Engineering

Structures. Cham, Switzerland: Springer International Publishing.

Aranha, C., Camacho Villalón, C. L., Campelo, F., Dorigo, M., Ruiz, R., Sevaux, M., … Stützle,

T. (2022). Metaphor-based metaheuristics, a call for action: The elephant in the room.

Swarm Intelligence, 16(1), 1-6.

Azevedo, F., Vale, Z. A., Oliveira, P. B. M., & Khodr, H. M. (2010). A long-term risk management

tool for electricity markets using swarm intelligence. Electric Power Systems Research,

80(4), 380-389.

Bai, J., Li, Y., Zheng, M., Khatir, S., Benaisa, B., Abualigah, L., & Wahab, M. A. (2023). A sinh

cosh optimizer. Knowledge-Based Systems, Article 111081.

Banks, A., Vincent, J., & Anyakoha, C. (2007). A review of particle swarm optimization. Part I:

background and development. Natural Computing, 6, 467-484.

Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 1,

fundamentals. University Computing, 15(2), 56-69.

Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-heuristic

algorithms. International Journal of Advances in Soft Computing and its Applications, 5(1),

1-35.

Benaissa, B., Hocine, N. A., Khatir, S., Riahi, M. K., & Mirjalili, S. (2021). YUKI Algorithm and

POD-RBF for elastostatic and dynamic crack identification. Journal of Computational

Science, 55, Article 101451.

Benaissa, B., Kobayashi, M., Kinoshita, K., & Takenouchi, H. (2023). A novel approach for

individual design perception based on fuzzy inference system training with YUKI algorithm.

Axioms, 12(10), Article 904.

Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical Science, 8(1), 10-15.

Birattari, M., & Kacprzyk, J. (2009). Tuning metaheuristics: A machine learning perspective (Vol.

197). Heidelberg, Berlin: Springer.

Blackwell, T., & Kennedy, J. (2018). Impact of communication topology in particle swarm

optimization. IEEE Transactions on Evolutionary Computation, 23(4), 689-702.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268-308.

Bolufé-Röhler, A., & Chen, S. (2020). A multi-population exploration-only exploitation-only

hybrid on CEC-2020 single objective bound constrained problems. 2020 IEEE Congress on

Evolutionary Computation (CEC), 1-8.

Busetti, F. (2003). Simulated annealing overview. Retrieved October 10, 2022, from

www.Geocities.Com/Francorbusetti/Saweb.Pdf,4

Camacho-Villalón, C. L., Dorigo, M., & Stützle, T. (2022). An analysis of why cuckoo search

does not bring any novel ideas to optimization. Computers & Operations Research, 142,

Article 105747.

Camacho‐Villalón, C. L., Dorigo, M., & Stützle, T. (2023). Exposing the grey wolf, moth‐flame,

whale, firefly, bat, and antlion algorithms: Six misleading optimization techniques inspired

by bestial metaphors. International Transactions in Operational Research, 30(6), 2945-

56 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

2971.

Castillo, J. C., & Segura, C. (2020). Differential evolution with enhanced diversity maintenance.

Optimization Letters, 14, 1471-1490.

Chakraborty, S., Sharma, S., Saha, A. K., & Chakraborty, S. (2021). SHADE-WOA: A

metaheuristic algorithm for global optimization. Applied Soft Computing, 113, Article

107866.

Chica, M., Pérez, A. A. J., Cordon, O., & Kelton, D. (2017). Why simheuristics? Benefits,

limitations, and best practices when combining metaheuristics with simulation. Retrieved

October 10, 2022, from http://dx.doi.org/10.2139/ssrn.2919208

Chopard, B., & Tomassini, M. (2018). Performance and limitations of metaheuristics. An

Introduction to Metaheuristics for Optimization, 191-203.

Cuevas, E., Diaz, P., Camarena, O., Cuevas, E., Diaz, P., & Camarena, O. (2021). Experimental

analysis between exploration and exploitation. Metaheuristic Computation: A Performance

Perspective, 249-269.

Dalla, C. E. R., da Silva, W. B., Dutra, J. C. S., & Colaço, M. J. (2021). A comparative study of

gradient-based and meta heuristic optimization methods using Griewank benchmark

function. Brazilian Journal of Development, 7(6), 55341-55350.

Dang, N., R., Dardinier, T., Doerr, B., Izacard, G., & Nogneng, D. (2018). A new analysis method

for evolutionary optimization of dynamic and noisy objective functions. Proceedings of the

Genetic and Evolutionary Computation Conference, 1467-1474.

Daoud, M. S., Shehab, M., Al-Mimi, H. M., Abualigah, L., Zitar, R. A., & Shambour, M. K. Y.

(2023). Gradient-based optimizer (GBO): A review, theory, variants, and applications.

Archives of Computational Methods in Engineering, 30(4), 2431-2449.

Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution - An

updated survey. Swarm and Evolutionary Computation, 27, 1-30.

Dehghani, M., Montazeri, Z., Trojovská, E., & Trojovský, P. (2023). Coati Optimization

Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems.

Knowledge-Based Systems, 259, Article 110011.

Doğan, B., & Ölmez, T. (2015). A new metaheuristic for numerical function optimization: Vortex

Search algorithm. Information Sciences, 293, 125-145.

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation

metaheuristic algorithms. Computers & Industrial Engineering, 137, Article 106040.

Dong, X., & Liu, X. (2021). Multi-objective optimization of heat transfer in microchannel for non-

Newtonian fluid. Chemical Engineering Journal, 412, Article 128594.

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer

Science, 344(2/3), 243-278.

Dorigo, M., & Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms,

applications, and advances. Handbook of Metaheuristics, 250-285.

Dorigo, M., & Stützle, T. (2019). Ant colony optimization: Overview and recent advances.

Heidelberg, Berlin: Springer.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational

Intelligence Magazine, 1(4), 28-39.

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 57

Du, K.-L., & Swamy, M. N. S. (2016). Search and optimization by metaheuristics. Techniques and

Algorithms Inspired by Nature, 1-10.

Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary

algorithms. Swarm and Evolutionary Computation, 1(1), 19-31.

Engelbrecht, A. P. (2013). Particle swarm optimization: Global best or local best? 2013 BRICS

Congress on Computational Intelligence and 11th Brazilian Congress on Computational

Intelligence, 124-135.

Gallagher, M. (2016). Towards improved benchmarking of black-box optimization algorithms

using clustering problems. Soft Computing, 20, 3835-3849.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm.

Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845.

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic

approach to solve structural optimization problems. Engineering with Computers, 29, 17-

35.

Gandomi, A. H., Yang, X.-S., Talatahari, S., & Alavi, A. H. (2013). Metaheuristic algorithms in

modeling and optimization. Metaheuristic Applications in Structures and Infrastructures, 1,

1-24.

Gavrilas, M. (2010). Heuristic and metaheuristic optimization techniques with application to

power systems. Proceedings of the 12th WSEAS International Conference on Mathematical

Methods and Computational Techniques in Electrical Engineering, 95-103.

Geem, Z. W. (2010). Recent advances in harmony search algorithm. doi:10.1007/978-3-642-

04317-8

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:

Harmony search. Simulation, 76(2), 60-68.

Gendreau, M., & Potvin, J.-Y. (2005). Tabu search. Search methodologies: Introductory tutorials

in optimization and decision support techniques, 165-186.

Ghandourah, E., Khatir, S., Banoqitah, E. M., Alhawsawi, A. M., Benaissa, B., & Wahab, M. A.

(2023). Enhanced ANN predictive model for composite pipes subjected to low-velocity

impact loads. Buildings, 13(4), Article 973.

Griffis, S. E., Bell, J. E., & Closs, D. J. (2012). Metaheuristics in logistics and supply chain

management. Journal of Business Logistics, 33(2), 90-106.

Gutjahr, W. J. (2009). Convergence analysis of metaheuristics. In Matheuristics: Hybridizing

metaheuristics and mathematical programming (pp. 159-187). Heidelberg, Berlin: Springer.

Halim, A. H., Ismail, I., & Das, S. (2021). Performance assessment of the metaheuristic

optimization algorithms: An exhaustive review. Artificial Intelligence Review, 54, 2323-

2409.

Hertz, A., Taillard, E., & De Werra, D. (1995). A tutorial on tabu search. Proceeding. of Giornate

Di Lavoro AIRO, 95, 13-24.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73.

Huang, C., Li, Y., & Yao, X. (2019). A survey of automatic parameter tuning methods for

metaheuristics. IEEE Transactions on Evolutionary Computation, 24(2), 201-216.

58 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

Hussain, K., Salleh, M. N. M., Cheng, S., & Naseem, R. (2017). Common benchmark functions

for metaheuristic evaluation: A review. JOIV: International Journal on Informatics

Visualization, 1(4/2), 218-223.

Hussain, K., Salleh, M. N. M., Cheng, S., & Shi, Y. (2019). On the exploration and exploitation

in popular swarm-based metaheuristic algorithms. Neural Computing and Applications, 31,

7665-7683.

Issa, M., & Mostafa, Y. (2022). Gradient-based optimizer for structural optimization problems. In

Integrating meta-heuristics and machine learning for real-world optimization problems (pp.

461-480). Heidelberg, Berlin: Springer.

Jaszkiewicz, A. (2001). Multiple objective metaheuristic algorithms for combinatorial

optimization. Poland: Politechniki PoznaĘąnskiej.

Karaboga, D. (2010). Artificial bee colony algorithm. Scholarpedia, 5(3), Article 6915.

Kareem, S. W. (2022). A nature-inspired metaheuristic optimization algorithm based on

Crocodiles Hunting Search (CHS). International Journal of Swarm Intelligence Research

(IJSIR), 13(1), 1-23.

Kaveh, A. (2014). Advances in metaheuristic algorithms for optimal design of structures.

Heidelberg, Berlin: Springer.

Kaveh, A. (2017). Applications of metaheuristic optimization algorithms in civil engineering.

Heidelberg, Berlin: Springer.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95-

International Conference on Neural Networks, 4, 1942-1948.

Khanduja, N., & Bhushan, B. (2021). Recent advances and application of metaheuristic

algorithms: A survey (2014-2020). In Metaheuristic and evolutionary computation:

Algorithms and applications (pp.207-228).

Khatir, A., Capozucca, R., Khatir, S., Magagnini, E., Benaissa, B., Le, C. T., & Wahab, M. A.

(2023). A new hybrid PSO-YUKI for double crack identification in CFRP cantilever beam.

Composite Structures, Article 116803.

Kobayashi, M. (2019). Multi-objective aesthetic design optimization for minimizing the effect of

variation in customer Kansei. Computer-Aided Design and Applications, 17(4), 690-698.

Kobayashi, M. (2020). Multi-objective aesthetic design optimization for minimizing the effect of

variation in customer Kansei. Abingdon, UK: Taylor and Francis.

Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimisation: a new method for

optimising multi-modal functions. International Journal of Computational Intelligence

Studies, 1(1), 93-119.

Kuo, S.-Y., & Chou, Y.-H. (2021). Building intelligent moving average-based stock trading

system using metaheuristic algorithms. IEEE Access, 9, 140383-140396.

Kuyu, Y. Ç., & Vatansever, F. (2021). Advanced metaheuristic algorithms on solving multimodal

functions: Experimental analyses and performance evaluations. Archives of Computational

Methods in Engineering, 1-13.

Lampinen, J. A., Price, K. V., & Storn, R. M. (2005). Differential evolution. Heidelberg, Berlin:

Springer.

Le, M. H., To, S. T., Theraulaz, G., Wahab, M. A., & Le, C. T. (2023). Termite life cycle optimizer.

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 59

Expert Systems with Applications, 213, Article 119211.

Lessmann, S., Caserta, M., & Arango, I. M. (2011). Tuning metaheuristics: A data mining based

approach for particle swarm optimization. Expert Systems with Applications, 38(10), 12826-

12838.

Mirjalili, S. (2016a). Dragonfly algorithm: A new meta-heuristic optimization technique for

solving single-objective, discrete, and multi-objective problems. Neural Computing and

Applications, 27, 1053-1073.

Mirjalili, S. (2016b). SCA: A sine cosine algorithm for solving optimization problems.

Knowledge-Based Systems, 96, 120-133.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering

Software, 69, 46-61.

Morales-Castañeda, B., Zaldivar, D., Cuevas, E., Fausto, F., & Rodríguez, A. (2020). A better

balance in metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation,

54, Article 100671.

Mucherino, A., & Seref, O. (2007). Monkey search: a novel metaheuristic search for global

optimization. AIP Conference Proceedings, 953(1), 162-173.

Nanda, S. J., & Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for

partitional clustering. Swarm and Evolutionary Computation, 16, 1-18.

Naruei, I., Keynia, F., & Molahosseini, A. S. (2022). Hunter-prey optimization: Algorithm and

applications. Soft Computing, 26(3), 1279-1314.

Odili, J. B. (2018). The dawn of metaheuristic algorithms. International Journal of Software

Engineering and Computer Systems, 4(2), 49-61.

Oftadeh, R., Mahjoob, M. J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization

algorithm inspired by group hunting of animals: Hunting search. Computers & Mathematics

with Applications, 60(7), 2087-2098.

Omidvar, M. N., Li, X., & Yao, X. (2021). A review of population-based metaheuristics for large-

scale black-box global optimization - Part I. IEEE Transactions on Evolutionary

Computation, 26(5), 802-822.

Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A. J., Molina, D., LaTorre, A., … Herrera, F.

(2021). A tutorial on the design, experimentation and application of metaheuristic algorithms

to real-world optimization problems. Swarm and Evolutionary Computation, 64, Article

100888.

Parouha, R. P., & Verma, P. (2021). State-of-the-art reviews of meta-heuristic algorithms with

their novel proposal for unconstrained optimization and applications. Archives of

Computational Methods in Engineering, 28, 4049-4115.

Peres, F., & Castelli, M. (2021). Combinatorial optimization problems and metaheuristics:

Review, challenges, design, and development. Applied Sciences, 11(14), Article 6449.

Pirim, H., Eksioglu, B., & Bayraktar, E. (2008). Tabu search: A comparative study. In W. Jaziri

(Ed.), Tabu search. doi:10.5772/5637

Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: A practical approach to

global optimization. Heidelberg, Berlin: Springer Science & Business Media.

Rahmani, M., Eraqi, M. K., & Nikoomaram, H. (2019). Portfolio optimization by means of Meta

60 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62

heuristic algorithms. Advances in Mathematical Finance and Applications, 4(4), 83-97.

Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and

unconstrained optimization problems. International Journal of Industrial Engineering

Computations, 7(1), 19-34.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: A

novel method for constrained mechanical design optimization problems. Computer-Aided

Design, 43(3), 303-315.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm.

Information Sciences, 179(13), 2232-2248.

Ribeiro, C. C., Hansen, P., Maniezzo, V., & Carbonaro, A. (2002). Ant colony optimization: an

overview. Essays and Surveys in Metaheuristics, 469-492.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. Retrieved October 10,

2022, from https://arxiv.org/pdf/1609.04747.pdf

Sahali, M. A., Aini, A., Bouzit, L., Himed, L., & Benaissa, B. (2023). Experimental modeling and

multi-objective optimization of friction stir welding parameters of AA 3004 aluminum alloy.

The International Journal of Advanced Manufacturing Technology, 124(3), 1229-1244.

Sala, R., & Müller, R. (2020). Benchmarking for metaheuristic black-box optimization:

Perspectives and open challenges. 2020 IEEE Congress on Evolutionary Computation

(CEC), 1-8.

Shirazi, M. I., Khatir, S., Benaissa, B., Mirjalili, S., & Wahab, M. A. (2023). Damage assessment

in laminated composite plates using modal Strain Energy and YUKI-ANN algorithm.

Composite Structures, 303, Article 116272. doi:10.1016/j.compstruct.2022.116272

Singh, G., & Singh, A. (2014). Comparative study of krill herd, firefly and cuckoo search

algorithms for unimodal and multimodal optimization. International Journal of Intelligent

Systems and Applications in Engineering, 2(3), 26-37.

Singh, P., & Choudhary, S. K. (2021). Introduction: Optimization and metaheuristics algorithms.

Metaheuristic and Evolutionary Computation: Algorithms and Applications, 3-33.

Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. Heidelberg, Berlin: Springer.

Soler-Dominguez, A., Juan, A. A., & Kizys, R. (2017). A survey on financial applications of

metaheuristics. ACM Computing Surveys (CSUR), 50(1), 1-23.

Sörensen, K. (2015). Metaheuristics - The metaphor exposed. International Transactions in

Operational Research, 22(1), 3-18.

Syafruddin, W. A., Köppen, M., & Benaissa, B. (2018). Does the Jaya algorithm really need no

parameters? 10th International Joint Conference on Computational Intelligence, 264-268.

Talbi, E., Basseur, M., Nebro, A. J., & Alba, E. (2012). Multi‐objective optimization using

metaheuristics: Non‐standard algorithms. International Transactions in Operational

Research, 19(1/2), 283-305.

Tarantilis, C. D., Ioannou, G., Kiranoudis, C. T., & Prastacos, G. P. (2005). Solving the open

vehicle routeing problem via a single parameter metaheuristic algorithm. Journal of the

Operational Research Society, 56, 588-596.

Tilahun, S. L., & Ong, H. C. (2015). Prey-predator algorithm: A new metaheuristic algorithm for

optimization problems. International Journal of Information Technology & Decision

 Brahim Benaissa et al. HCMCOUJS-Advances in Computational Structures, 14(1), 34-62 61

Making, 14(6), 1331-1352.

To, S. T., Le, H. M., Wahab, M. A., & Le, C. T. (2022). An efficient planet optimization algorithm

for solving engineering problems. Scientific Reports, 12(1), Article 8362.

Tovey, C. A. (2018). Nature-inspired heuristics: Overview and critique. Recent Advances in

Optimization and Modeling of Contemporary Problems, 158-192.

Van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing. Heidelberg, Berlin:

Springer.

Velasco, L., Guerrero, H., & Hospitaler, A. (2023). A literature review and critical analysis of

metaheuristics recently developed. Archives of Computational Methods in Engineering, 1-

22.

Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft

Computing, 22, 387-408.

Wong, W. K., & Ming, C. I. (2019). A review on metaheuristic algorithms: Recent trends,

benchmarking and applications. 2019 7th International Conference on Smart Computing &

Communications (ICSCC), 1-5.

Xu, J., & Zhang, J. (2014). Exploration-exploitation tradeoffs in metaheuristics: Survey and

analysis. Proceedings of the 33rd Chinese Control Conference, 8633-8638.

Yang, X., & Gandomi, A. H. (2012). Bat algorithm: A novel approach for global engineering

optimization. Engineering Computations, 29(5), 464-483.

Yang, X.-S. (2009). Harmony search as a metaheuristic algorithm. Music-Inspired Harmony

Search Algorithm: Theory and Applications, 1-14.

Yang, X.-S. (2010). Engineering optimization: An introduction with metaheuristic applications.

Hoboken, NJ: John Wiley & Sons.

Yang, X.-S. (2011a). Metaheuristic optimization: Algorithm analysis and open problems.

International Symposium on Experimental Algorithms, 21-32.

Yang, X.-S. (2011b). Metaheuristic optimization. Scholarpedia, 6(8), Article 11472.

Yang, X.-S., & Slowik, A. (2020). Firefly algorithm. In Swarm intelligence algorithms (pp. 163-

174). Boca Raton, FL: CRC Press.

Yazdani, S., Nezamabadi-Pour, H., & Kamyab, S. (2014). A gravitational search algorithm for

multimodal optimization. Swarm and Evolutionary Computation, 14, 1-14.

Zhang, J. (2019). Gradient descent based optimization algorithms for deep learning models

training. Retrieved October 10, 2022, from https://arxiv.org/pdf/1903.03614.pdf

Zitouni, F., Harous, S., & Maamri, R. (2020). The solar system algorithm: A novel metaheuristic

method for global optimization. IEEE Access, 9, 4542-4565.

Zitouni, F., Harous, S., Belkeram, A., & Hammou, L. E. B. (2022). The archerfish hunting

optimizer: A novel metaheuristic algorithm for global optimization. Arabian Journal for

Science and Engineering, 47(2), 2513-2553.

©The Authors 2024. This is an open access publication under CC BY NC licence.

https://arxiv.org/pdf/1903.03614.pdf

