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Metaheuristic optimization algorithms are versatile and 

adaptable tools that effectively solve various complex optimization 

problems. These algorithms are not restricted to specific types of 

problems or gradients. They can explore globally and handle multi-

objective optimization efficiently. They strike a balance between 

exploration and exploitation, contributing to advancements in 

optimization. However, it’s important to note their limitations, 

including the lack of a guaranteed global optimum, varying 

convergence rates, and their somewhat opaque functioning. In 

contrast, metaphor-based optimization algorithms, while intuitively 

appealing, have faced controversy due to potential 

oversimplification and unrealistic expectations. Despite these 

considerations, metaheuristic algorithms continue to be widely used 

for tackling complex problems. This research paper aims to explore 

the fundamental components and concepts that underlie optimization 

algorithms, focusing on the use of search references and the delicate 

balance between exploration and exploitation. Visual 

representations of the search behavior of selected metaheuristic 

algorithms will also be provided. 

1. Introduction  

Metaheuristic optimization algorithms represent a versatile class of algorithms employed 

to address intricate optimization problems spanning various domains (Abdel-Basset, Abdel-Fatah, 

& Sangaiah, 2018). They are particularly useful when conventional optimization techniques, 

including gradient-based methods or exact algorithms, prove unsuitable due to factors such as 

problem complexity, non-linearity, or extensive search spaces. In the realm of metaheuristic 

optimization, several essential characteristics and principles stand out. These algorithms 

systematically explore the solution space through iterative processes, continuously enhancing the 

initial solution or solution population over multiple iterations (Agrawal, Abutarboush, Ganesh, & 

Mohamed, 2021).  

The infusion of randomness into the search process serves as a distinguishing characteristic 

of the majority of metaheuristic algorithms (Odili, 2018). This stochastic element plays a pivotal 

role in reducing the likelihood of converging to local optima while simultaneously promoting a 

more thorough exploration of the complete solution space. Most metaheuristic algorithms 

prioritize the discovery of global optima or top-quality solutions across a wide range of the solution 

space, as opposed to fixating solely on local optima (Yang, 2011a). 

In contrast to gradient-based methods, metaheuristics do not depend on gradient 

information from the objective function (Wong & Ming, 2019). This characteristic renders them 

applicable to problems featuring non-differentiable, discontinuous, or noisy objective functions. 
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They exhibit versatility in their application, accommodating a wide spectrum of optimization 

problems, including continuous, discrete, combinatorial, and mixed-integer optimization 

(Dokeroglu, Sevinc, Kucukyilmaz, & Cosar, 2019). They can be utilized for both single-objective 

and multi-objective optimization tasks. Among the array of metaheuristic optimization algorithms, 

most early algorithms include:  

Genetic Algorithms (GAs), drawing inspiration from the fundamental principles of natural 

selection and genetics, are computational optimization techniques that leverage a population of 

potential solutions (Holland, 1992). These algorithms employ genetic operators, including 

crossover and mutation, in tandem with sophisticated selection mechanisms (Sivanandam & 

Deepa, 2008). The overarching goal of GAs is to iteratively improve and evolve increasingly 

optimal solutions as they progress through successive generations. By mimicking the mechanisms 

of biological evolution, GAs harness the power of genetic diversity and survival of the fittest to 

guide the search for high-quality solutions in complex optimization landscapes (Beasley, Bull, & 

Martin, 1993). Through a process of recombination, mutation, and natural selection, GAs 

continually refine and adapt the solution candidates, ultimately leading to the discovery of superior 

solutions over time. 

Particle Swarm Optimization (PSO) is an optimization algorithm that takes inspiration 

from the coordinated behaviors observed in natural phenomena, specifically the collective 

movements of birds in flocks (Kennedy & Eberhart, 1995). In the realm of PSO, a population of 

particles dynamically explores the solution space. These particles undergo a continual process of 

adjustment in their positions, a process that encompasses not only their individual best-known 

solutions but also the incorporation of information gleaned from the best-known solutions of all 

particles (Wang, Tan, & Liu, 2018). This approach encapsulates the idea that each particle 

emulates the behavior of an individual entity within a larger group (Banks, Vincent, & Anyakoha, 

2007). As they traverse the solution space, particles are not operating in isolation. Instead, they are 

influenced by the collective wisdom of their peers, just as birds in a flock synchronize their 

movements to optimize their group’s overall trajectory. In essence, PSO seeks to connect the 

power of collaboration and information exchange among particles to steer them toward promising 

regions of the solution space, ultimately facilitating the discovery of optimal or near-optimal 

solutions to complex optimization problems (Blackwell & Kennedy, 2018). 

Simulated Annealing (SA), which draws its inspiration from the annealing process in 

metallurgy (Bertsimas & Tsitsiklis, 1993), commences its search with a metaphorical “high 

temperature.” As the algorithm iteratively proceeds, it gradually reduces this temperature, 

emulating the cooling of a material during the annealing process. This cooling process serves as a 

pivotal component in SA, enabling it to escape from the confines of local optima (Van Laarhoven 

& Aarts, 1987). Just as the gradual decrease in temperature in metallurgy allows a material’s 

atomic structure to evolve towards a more stable and desirable state, the analogous reduction in 

“temperature” in Simulated Annealing facilitates the exploration of the solution space, leading to 

the discovery of superior and globally optimal solutions in complex optimization problems 

(Busetti, 2003). 

Ant Colony Optimization (ACO) derives its fundamental principles from the intricate 

foraging behaviors exhibited by real ants (Dorigo & Stützle, 2003). This algorithm employs 

artificial ants as agents that traverse a given graph or solution space in search of optimal solutions 

(Dorigo, Birattari, & Stutzle, 2006). The navigation strategy of these synthetic ants closely mimics 

the foraging patterns observed in nature, where real ants communicate through chemical signals 

known as pheromones to guide one another toward the most promising paths (Dorigo & Blum, 

2005). Similarly, in ACO, the artificial ants leave virtual pheromone traces as they explore, and 

these traces play a pivotal role in influencing the decisions of subsequent ant agents. Through this 

pheromone-based guidance mechanism, ACO effectively directs its exploration efforts toward 

areas of the solution space that hold the potential for improved solutions, allowing for the 
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discovery of optimal or high-quality solutions in complex optimization scenarios (Dorigo & 

Stützle, 2019). 

Tabu Search (TS) relies on its short-term memory, which serves a dual purpose in the 

algorithm (Gendreau & Potvin, 2005). This memory maintains a record of previously explored 

‘tabu’ solutions to prevent redundant searches and avoid stagnation in the search process (Pirim, 

Eksioglu, & Bayraktar, 2008). This unique feature of TS enhances the algorithm in multiple ways. 

It improves computational efficiency by preventing revisits to already evaluated solutions and 

enhances the overall robustness and versatility of TS. By avoiding redundant visits and promoting 

diversification, TS explores the solution space more comprehensively, increasing the chances of 

finding superior solutions (Hertz, Taillard, & De Werra, 1995). Differential Evolution (DE), a 

population-based algorithm, operates by creating new candidate solutions by synthesizing 

variations observed among individuals within the population (Lampinen, Price, & Storn, 2005). 

This collective wisdom of the population members plays a crucial role in searching for optimal 

solutions. The exchange of diverse perspectives within the population guides DE in exploring the 

solution space and discovering refined solutions (Das, Mullick, & Suganthan, 2016). 

Harmony Search (HS) is an optimization algorithm inspired by the collaborative and 

iterative nature of music composition (Yang, 2009). In HS, a population of candidate solutions is 

analogous to musical elements, and they undergo iterative adjustments, mirroring the fine-tuning 

process in music composition (Geem, Kim, & Loganathan, 2001). This iterative approach allows 

HS to continuously explore the solution space, aiming to optimize the encountered solutions. The 

algorithm’s primary objective is to identify and converge towards improved solutions, akin to 

musicians crafting harmonious compositions through creative improvisations. HS’s effectiveness 

in optimizing complex problems lies in its ability to capture the essence of harmonization and 

refinement from the musical world, resulting in solutions that exhibit precision and artistry, akin 

to a well-composed musical piece (Geem, 2010). 

The Arithmetic Optimization Algorithm (AOA) (Abualigah, Diabat, Mirjalili, Abd Elaziz, 

& Gandomi, 2021) combines exploration and exploitation strategies to seek optimal or near-

optimal solutions. In the exploration phase, AOA employs high-dispersion mathematical 

operations, including division and multiplication, to allow solutions to dynamically adapt their 

positions based on random numbers and the Math Optimizer Accelerated (MOA) function. 

Conversely, in the exploitation phase, the algorithm focuses on fine-tuning solutions through low-

dispersion operations like subtraction and addition, guided by random numbers and the MOA 

function. AOA operates through multiple iterations, continually tracking the best solution and 

terminating when specified conditions are met. This unique balance between exploration and 

exploitation, driven by randomization and mathematical operations under the guidance of the 

MOA function, distinguishes AOA as an effective method for optimizing complex problems. 

The YUKI algorithm introduces a dynamic methodology for search space reduction, 

focusing on establishing a localized search region around the best-identified solution (Benaissa, 

Hocine, Khatir, Riahi, & Mirjalili, 2021). It continuously adjusts the search area’s dimensions 

using inter-point distance as a key metric. The first point corresponds to the global best solution 

with the lowest fitness value, while the second point, MeanBest, represents the centroid of the best 

solutions found by each population member (Benaissa, Kobayashi, Kinoshita, & Takenouchi, 

2023). Local boundaries are computed based on these reference points. The exploration population 

extends its search beyond the local search area, with the population size iteratively adjusted based 

on a conditional expression (Amoura, Benaissa, Al Ali, & Khatir, 2023). This approach ensures a 

flexible adaptation of search space dimensions. Notably, the algorithm’s mathematical formulation 

is straightforward and exhibits several key attributes, including a clear separation between 

exploration and exploitation efforts, independence of search area sizes across dimensions, dynamic 

fine-tuning of the local search area, and its contraction as solutions approach the optimum (Shirazi, 

Khatir, Benaissa, Mirjalili, & Wahab, 2023). 
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Some of the controversies related to recently developed optimization algorithms is due to 

the confusion in naming such as the Sinh cosh optimizer (Bai et al., 2023), the Sine cosine 

algorithm (Mirjalili, 2016b), and the Gravitational search algorithm (Yazdani, Nezamabadi-Pour, 

& Kamyab, 2014), Planet Optimization Algorithm (To, Le, Wahab, & Le, 2022), Solar system 

algorithm (Zitouni, Harous, & Maamri, 2020), also the unclear connection between the metaphor 

inspiration and the algorithm heuristics, within algorithms of similar names, such as  Prey-predator 

algorithm  (Tilahun & Ong, 2015) and the hunting of animals: Hunting search (Oftadeh, Mahjoob, 

& Shariatpanahi, 2010) and the recently developed algorithms, such as  Hunter-prey optimization 

(Naruei, Keynia, & Molahosseini, 2022), crocodiles hunting search (Kareem, 2022), The 

archerfish hunting optimizer  (Zitouni, Harous, Belkeram, & Hammou, 2022), and the Coati 

Optimization Algorithm (Dehghani, Montazeri, Trojovská, & Trojovský, 2023).  

These algorithms possess a significant degree of adaptability, allowing them to be tailored 

to address specific optimization challenges. The choice of an appropriate metaheuristic is 

contingent upon various factors, including the intrinsic attributes of the problem, the computational 

resources at one’s disposal, and the user’s proficiency in customizing and fine-tuning the algorithm 

to align with the precise requirements of the optimization task in question (Eiben & Smit, 2011). 

2. The advantages of metaheuristic optimization algorithms 

Metaheuristic optimization algorithms play a pivotal role in the realm of optimization due 

to their inherent adaptability and efficacy in addressing intricate optimization challenges across 

diverse domains. This discourse underscores their importance, elucidating the following salient 

factors: 

2.1. Agnostic to the problem being solved 

Metaheuristic algorithms possess an exceptional attribute that makes them highly adaptable 

and effective in a wide array of problem-solving scenarios (Yang, 2011a). They are characterized 

by their remarkable versatility as they do not discriminate based on the nature of the optimization 

problem (Yang, 2011b). This agnostic quality towards problem types is a valuable feature, as it 

allows metaheuristic algorithms to transcend traditional boundaries and find applications in 

various fields and domains.  

For instance, in the realm of engineering (Kaveh, 2017), they can be used to optimize 

complex design parameters for structures (Kaveh, 2014), systems (Gavrilas, 2010), or processes 

(Al Thobiani et al., 2022). In logistics, these algorithms can help streamline supply chain 

operations (Griffis, Bell, & Closs, 2012) and route planning (Tarantilis, Ioannou, Kiranoudis, & 

Prastacos, 2005). Furthermore, they are equally at home in the world of finance (Soler-Dominguez, 

Juan, & Kizys, 2017), where they can assist in portfolio optimization (Rahmani, Eraqi, & 

Nikoomaram, 2019), risk management (Azevedo, Vale, Oliveira, & Khodr, 2010), or algorithmic 

trading strategies (Kuo & Chou, 2021). Moreover, the data science domain benefits from 

metaheuristic algorithms for tasks such as feature selection (Agrawal et al., 2021), hyperparameter 

tuning (Ghandourah et al., 2023), or clustering analysis (Nanda & Panda, 2014). 

2.2. Gradient independence 

Unlike conventional methods, which heavily depend on the gradient information of the 

objective function, metaheuristics are particularly well-suited for situations where computing 

gradients is computationally expensive or even impossible (Gandomi, Yang, Talatahari, & Alavi, 

2013). This attribute significantly broadens their applicability and makes them invaluable in 

various optimization scenarios. In traditional optimization, algorithms like gradient descent or 

conjugate gradient methods rely on the knowledge of the gradient, which provides the direction of 

the steepest ascent or descent for the objective function (Ruder, 2016). However, in many real-

world problems, obtaining the gradient can be a challenging and resource-intensive task. This is 

especially true for problems with complex, non-differentiable, discontinuous (Yang, 2010), or 
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noisy objective functions (Dang, Dardinier, Doerr, Izacard, & Nogneng, 2018). 

Metaheuristics, on the other hand, are robust and versatile optimization approaches that do 

not require gradient information. Instead, they explore the search space by iteratively and 

intelligently sampling solutions (Hussain, Salleh, Cheng, & Shi, 2019). These methods often 

employ heuristics, randomization, and search strategies that make minimal assumptions about the 

problem’s mathematical properties. As a result, they can effectively tackle optimization problems 

where gradients are unavailable, unreliable, or prohibitively expensive to compute. 

2.3. Global search capability 

These algorithms are specifically engineered to conduct a thorough exploration of the 

solution space, with the primary objective of finding global optima or high-quality solutions 

(Beheshti & Shamsuddin, 2013). This characteristic is of paramount importance, particularly when 

dealing with optimization problems that feature multiple local optima (Jaszkiewicz, 2001). In such 

problems, there are numerous points within the solution space where the objective function reaches 

local optima, which are solutions that are the best in their immediate vicinity but may not be the 

best overall. Traditional optimization methods, like gradient-based techniques, are susceptible to 

getting stuck at these local optima because they rely on local information to guide their search 

(Ruder, 2016). 

Metaheuristic algorithms, on the other hand, employ a more versatile and global approach. 

They systematically explore the entire solution space, often by combining various search 

strategies, heuristics, or stochastic elements. This comprehensive exploration allows them to 

transcend the limitations of local convergence and increases the likelihood of discovering the 

global optima, which represents the best possible solution across the entire solution space 

(Hussain, Salleh, Cheng, & Naseem, 2017). 

2.4. Multi-objective optimization 

Multi-Objective Optimization (MOO) is a crucial field in the domain of optimization, 

where the primary focus is on simultaneously optimizing multiple, often conflicting objectives 

(Dong & Liu, 2021). This is in contrast to traditional single-objective optimization, where the goal 

is to find the optimal solution for a single objective. MOO is particularly pertinent in decision-

making contexts where the pursuit of one objective may negatively impact another, requiring 

careful consideration of trade-offs (Sahali, Aini, Bouzit, Himed, & Benaissa, 2023). 

The intrinsic adaptability of metaheuristics in handling MOO problems is instrumental in 

addressing complex real-world challenges, such as Kansei design (Kobayashi, 2019) and design 

optimization (Kobayashi, 2019). By providing a range of Pareto-optimal solutions that represent 

different compromise options, metaheuristics assist decision-makers in making informed choices 

that align with their preferences and priorities (Talbi, Basseur, Nebro, & Alba, 2012). 

2.5. Exploration and exploitation 

Exploration, as a fundamental component of metaheuristic algorithms, entails the 

systematic and purposeful search for new and uncharted regions within the solution space (Xu & 

Zhang, 2014). This phase aims to diversify the set of solutions under consideration, thereby 

increasing the chances of discovering novel and potentially superior solutions (Hussain et al., 

2019). By venturing into unexplored territories, metaheuristics harness a degree of randomness 

and adaptability, allowing them to escape local optima - suboptimal solutions that are locally 

optimal but not globally so (Cuevas et al., 2021). 

On the other hand, exploitation, the complementary facet of metaheuristics, involves 

intensively scrutinizing promising regions within the solution space, where known high-quality 

solutions have been identified. The goal here is to refine and enhance the existing solutions, 

leveraging the acquired knowledge to achieve further improvements. This aspect of metaheuristics 
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is characterized by the ability to exploit historical information and focus the search toward the 

most promising areas, thereby gradually converging toward optimal or near-optimal solutions 

(Alorf, 2023). 

The remarkable proficiency of metaheuristics lies in their ability to dynamically balance 

the two aspects of exploration and exploitation. This dynamic equilibrium is essential in avoiding 

premature convergence to suboptimal solutions, as a myopic emphasis on exploitation can result 

in stagnation at local optima. Conversely, an excessive focus on exploration may lead to an 

inefficient search that fails to capitalize on promising regions (Kobayashi, 2020). Metaheuristics, 

through sophisticated control mechanisms and adaptive strategies, achieve a harmonious synergy 

between these two facets, ensuring that the algorithm effectively explores the solution space, 

discovers valuable solutions, and exploits the knowledge acquired during the search to enhance 

the quality of solutions (Xu & Zhang, 2014). 

2.6. Configurability and tuning 

This high degree of configurability is instrumental in adapting metaheuristic algorithms to 

address the intricacies of distinct problem contexts. By fine-tuning algorithmic parameters, 

practitioners can optimize the behavior and performance of these heuristics to effectively tackle 

the idiosyncrasies of the problem at hand (Lessmann, Caserta, & Arango, 2011). This ability to 

adjust parameters can be crucial, as various problems exhibit diverse characteristics, such as search 

space dimensions, objective functions, and constraints. 

Research has shown that the configurability of metaheuristics can enhance their 

adaptability (Huang, Li, & Yao, 2019). The judicious selection of parameter values allows 

practitioners to strike a balance between exploration and exploitation, optimizing the search 

process within the algorithm. Moreover, it permits the fine-grained adjustment of convergence 

speed, thereby tailoring the algorithm to meet specific performance requirements and 

computational resources. Some algorithms do not have tuning parameters (Syafruddin, Köppen, 

& Benaissa, 2018).   

2.7. Practical problem solving 

The significance of these algorithms also lies in their ability to offer viable solutions to 

problems that are typically characterized by high dimensionality, non-linearity, and a multitude of 

constraints (Singh & Choudhary, 2021). Traditional optimization techniques often struggle to 

provide optimal or near-optimal solutions within reasonable timeframes for such complex problem 

instances. Metaheuristics, on the other hand, exhibit remarkable adaptability and robustness, 

making them well-suited for scenarios where the search space is vast, and the objective function 

is not easily defined or computationally expensive to evaluate.  

In machine learning, the hyperparameter tuning problem (Birattari & Kacprzyk, 2009), 

which involves configuring the parameters of machine learning algorithms to enhance predictive 

performance, has been notably addressed through the application of metaheuristics, providing 

valuable insights into the optimal hyperparameter configurations for diverse learning tasks. 

2.8. Innovation 

In the quest for improved metaheuristic algorithms, researchers embrace a 

multidisciplinary approach that draws from various fields such as computer science, mathematics, 

and biology (Velasco, Guerrero, & Hospitaler, 2023). This interdisciplinary synergy not only 

enriches the theoretical foundation of metaheuristic algorithms but also enhances their practical 

applicability across a broad spectrum of real-world problems. 

The relentless pursuit of innovation in metaheuristic algorithms encompasses multiple 

dimensions, including the development of new algorithmic structures, exploration of diverse 

optimization landscapes (Chakraborty, Sharma, Saha, & Chakraborty, 2021), and the adaptation 
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of metaheuristic principles to emerging technological paradigms. By doing so, researchers 

continually refine and expand the toolkit available to practitioners (Peres & Castelli, 2021). 

Furthermore, the dynamic nature of this research field fosters a vibrant academic 

community, with scholars engaged in ongoing discourse, collaboration, and knowledge exchange. 

This ecosystem of intellectual exchange serves as a crucible for nurturing fresh ideas, refining 

existing techniques, and validating the practicality of novel approaches through rigorous 

experimentation and evaluation (Bolufé-Röhler & Chen, 2020). 

3. The limitations of metaheuristic optimization algorithms 

Metaheuristic algorithms stand as formidable and adaptable tools, designed to address 

intricate optimization challenges (Chopard & Tomassini, 2018). However, an exhaustive 

examination of their attributes reveals several limitations and constraints necessitating 

consideration. These constraints encompass the following aspects: 

3.1. Absence of global optimality guarantee 

Global optimality, in the context of an optimization problem, signifies the identification of 

the absolute best solution within the entire search space, as determined by the objective function 

(Adam, Alexandropoulos, Pardalos, & Vrahatis, 2019). The absence of a global optimality 

guarantee means that metaheuristic algorithms cannot ensure that the solution they converge upon 

is the global optimum, i.e., the best possible solution achievable for the given problem. 

One of the primary reasons for this absence of a global optimality guarantee is the nature 

of metaheuristic algorithms themselves. These algorithms are often stochastic in nature and 

operate by iteratively exploring and exploiting the search space (Du & Swamy, 2016). They rely 

on heuristics, which are problem-specific rules or guidelines, to guide their search. As a result, the 

solutions generated by these algorithms are contingent on the initial conditions, algorithm 

parameters, and the inherent randomness in their search strategies. Consequently, the solutions 

obtained may be influenced by these factors and may not consistently reach the ultimate pinnacle 

of optimization. 

Furthermore, the challenge of global optimality becomes particularly pronounced in cases 

involving highly complex or multimodal search spaces. Complex search spaces exhibit a multitude 

of local optima, making it challenging for metaheuristic algorithms to differentiate between local 

and global optima (Kuyu & Vatansever, 2021). Multimodal search spaces feature multiple distinct 

optima, further complicating the task of locating the global optimum. Metaheuristic algorithms 

may inadvertently converge on a local optimum, which is a solution that is superior only within a 

limited neighborhood in the search space, and fail to explore other regions where the global 

optimum might reside (Singh & Singh, 2014). 

3.2. Convergence speed 

Convergence speed, a critical performance metric of metaheuristic algorithms, exhibits 

significant variability contingent upon the nature of the problem being addressed and the particular 

algorithm employed (Gutjahr, 2009). It is imperative to acknowledge that the convergence speed 

is not a constant parameter; rather, it is intricately intertwined with the intricacies of the 

optimization problem at hand and the chosen metaheuristic algorithm (Yang, 2011a). 

For numerous optimization problems, especially those characterized by high-dimensional 

or complex solution spaces, achieving convergence, wherein the algorithm reaches a satisfactory 

solution, can be a protracted process. In such scenarios, metaheuristic algorithms often require a 

substantial number of iterations before they are able to discover solutions that meet the predefined 

quality criteria (Blum & Roli, 2003). The requirement for an extensive iteration count can result 

in a considerable computational burden, entailing an extended computational runtime and 

increased resource utilization. 
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The computational expenses incurred due to slow convergence can manifest in various 

ways, including increased energy consumption, extended execution times, and greater 

computational resource utilization, such as CPU and memory. Therefore, understanding the 

convergence speed and its implications on computational costs is paramount for practitioners and 

researchers when selecting and configuring metaheuristic algorithms for specific optimization 

tasks (Chopard & Tomassini, 2018). 

3.3. Parameter tuning 

The process of identifying optimal parameter settings for metaheuristics can be 

characterized as a challenging and time-intensive endeavor. It involves a systematic exploration 

of the parameter space, aiming to strike a balance between exploration and exploitation. This 

balance is essential for achieving efficient convergence and high-quality solutions. The search for 

suitable parameter values often necessitates extensive experimentation, simulation, and empirical 

evaluation. 

Researchers and practitioners frequently employ various optimization techniques, 

including running the metaheuristic with different combinations of parameter values, evaluating 

the performance of each configuration, and selecting the one that yields the best results according 

to predefined criteria (Osaba et al., 2021). Furthermore, the quest for optimal parameter settings is 

compounded by the fact that the choice of parameters can depend on the specific problem instance 

or dataset at hand. Consequently, it may be necessary to perform parameter tuning for each unique 

problem to achieve optimal performance, making it a laborious and resource-intensive process 

(Huang et al., 2019). 

3.4. Black-box nature 

The term “Black-Box” in the context of metaheuristic optimization algorithms implies that 

these methods operate without a comprehensive understanding of the problem being solved. 

Unlike traditional mathematical optimization methods, such as linear programming or integer 

programming, which rely on a detailed problem formulation, metaheuristics approach problems 

without requiring a priori knowledge of the problem structure (Sala & Müller, 2020). This feature 

is particularly advantageous in scenarios where problem formulations are complex or unknown, 

and in cases where the objective function might be non-differentiable, discontinuous, or 

computationally expensive to evaluate. Researchers and practitioners may find it challenging to 

interpret the results, make informed adjustments to the optimization process, or validate the quality 

of solutions generated by the metaheuristic algorithms (Omidvar, Li, & Yao, 2021). 

Despite these inherent limitations, the enduring utilization of metaheuristic optimization 

algorithms persists due to their aptitude for tackling complex problems, for which precise or 

specialized methods remain elusive. Researchers and practitioners commonly employ an empirical 

approach, experimenting with diverse metaheuristics and parameter configurations to discern 

optimal solutions specific to their individual optimization challenges (Gallagher, 2016). 

4. The controversy of metaphor-based optimization algorithms 

Metaphor-based metaheuristic algorithms leverage metaphorical concepts and analogies 

from the natural world to solve complex problems. By drawing parallels between real-world 

phenomena and optimization processes, metaphor-based metaheuristics provide a unique and 

intuitive approach to tackling intricate, multi-dimensional, and often non-deterministic 

optimization challenges (Sörensen, 2015). This innovative paradigm offers a bridge between 

human intuition and algorithmic problem-solving, enabling more effective and holistic problem-

solving strategies. In this section, we delve into the controversy surrounding the use of metaphors 

in the context of metaheuristic algorithms. 
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4.1. Oversimplification 

While metaphors undeniably enhance the accessibility of algorithms, rendering them more 

approachable and comprehensible to a wider audience, this very accessibility may inadvertently 

lead to the oversimplification of the underlying algorithmic intricacies. In so doing, metaphors risk 

fostering misunderstandings and misconceptions among practitioners and researchers, who may 

be enticed to embrace a superficial understanding of the algorithm’s functionality (Chica, Pérez, 

Cordon, & Kelton, 2017). 

The challenge here lies in striking a delicate balance between the accessibility facilitated 

by metaphors and the preservation of algorithmic intricacies and nuances. The risk is that the 

metaphorical framework may emphasize the overarching principles and analogies, potentially 

obscuring the intricate details that are critical for precise comprehension of algorithmic operations. 

Consequently, this approach may impart an incomplete or erroneous understanding of the 

algorithm, which could hinder its effective application and limit its potential for addressing 

complex optimization challenges (Tovey, 2018). 

4.2. Misleading expectations 

Metaphors, which are often employed to conceptualize and communicate complex 

optimization processes, can inadvertently create an expectation that these optimization algorithms 

will closely emulate the behavior of their metaphorical counterparts in real-world scenarios 

(Camacho‐Villalón, Dorigo, & Stützle, 2023). This is a reasonable presumption given that 

metaphors are designed to bridge the gap between abstract mathematical concepts and concrete, 

real-world phenomena. However, the crux of the issue lies in the fact that this presumption 

frequently does not align with the reality of algorithmic performance (Aranha et al., 2022).  

4.3. Metaphor algorithm names 

One of the primary concerns is that the naming of these algorithms doesn’t always reflect 

the underlying principles or strategies they employ. Researchers sometimes choose names that are 

catchy or trendy, but these names may not adequately convey the uniqueness or innovation of the 

algorithm (Camacho-Villalón, Dorigo, & Stützle, 2022). As a result, it becomes challenging to 

discern what sets one algorithm apart from another, hindering the efficient selection of an 

appropriate algorithm for a specific problem. Furthermore, the similarity in names can lead to 

misunderstandings and misattribution of ideas. It can create a situation where algorithms with 

similar-sounding names are assumed to be closely related or even identical when, in fact, they may 

have distinct design philosophies, parameters, or performance characteristics, and the opposite can 

be true (Du & Swamy, 2016). 

5. Metaheuristic algorithmic framework  

The fundamental structural components governing the operation of these algorithms are 

succinctly outlined as follows: 

5.1. Initialization 

At the outset of the algorithm, it begins with the creation of an initial solution or a 

population of potential solutions. These starting points can be generated in one of two ways: 

In this step, the algorithm randomly generates the initial solutions. This randomness can 

help explore a wide range of possible solutions, making it especially useful in situations where 

there is little prior knowledge about the problem. Alternatively, the algorithm may utilize problem-

specific heuristics to create the initial solutions, leveraging domain expertise and problem-specific 

insights to guide the initial solution-generation process.  

Once the initial solutions are generated, the algorithm then proceeds to evaluate their 

quality using an objective function. The objective function quantifies how well each solution 
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performs with respect to the problem’s goals and constraints. The algorithm aims to optimize this 

objective function, typically by adjusting the solutions iteratively (Osaba et al., 2021). 

In the context of optimization algorithms like Particle Swarm Optimization (PSO), the 

algorithm uses strategies that rely on search references to update and refine the solutions over time. 

The Global Best: In PSO, each particle maintains a “global best” reference, which represents the 

best solution found by any particle in the entire swarm. This global best serves as a guide for the 

entire swarm, influencing the movement of individual particles towards a potentially better 

solution. And Personal Best: In addition to the global best, each particle maintains its “personal 

best” reference, which is the best solution it has found during its individual journey. This personal 

best reference guides the particle’s movement, helping it explore and exploit the solution space 

efficiently (Engelbrecht, 2013).  

These references are different from other algorithms, such as: Tabu Search maintains a 

tabu list of recently visited solutions. Solutions on this list are considered “tabu,” and the algorithm 

avoids revisiting them. The tabu list serves as a search reference to prevent cycling (Pirim et al., 

2008). In Differential Evolution, a parent vector is chosen as a reference for creating new candidate 

solutions. The mutation and crossover operators are applied to the parent vectors to generate new 

solutions (Price, Storn, & Lampinen, 2006). In Harmony Search, a memory matrix stores the best 

solutions found so far. During the search, the algorithm creates new solutions by improvising based 

on the values in the memory matrix. The memory matrix serves as a reference for creating new 

harmonies that aim to improve upon past solutions (Alia & Mandava, 2011).  

In Ant Colony Optimization, pheromone levels on paths represent references. Ants deposit 

pheromones on paths they explore, and other ants are more likely to follow paths with higher 

pheromone levels. This reinforces the exploration of promising paths and leads to the discovery of 

better solutions over time (Ribeiro, Hansen, Maniezzo, & Carbonaro, 2002). YUKI algorithm 

identifies the best solution found so far, defined as the point with the minimum fitness value. This 

solution is crucial as it represents the center of the local search area (Al Ali, Shimoda, Benaissa, 

& Kobayashi, 2023). And the MeanBest is calculated as the center of the best solutions found so 

far by each member of the population. It acts as a reference point to determine the size and location 

of the local search area (Khatir et al., 2023). 

By continuously updating solutions based on these references and following specific 

algorithms’ strategies, the optimization process refines the solutions, gradually converging 

towards optimal or near-optimal solutions to the problem. 

5.2. Objective function assessment 

Objective Function Assessment is a crucial step in various optimization algorithms and 

problem-solving approaches. It involves evaluating the quality of initial solutions or those 

present in a population, primarily through the use of an objective function. This objective 

function serves as a critical metric that quantifies how well each solution aligns with the primary 

optimization goal. This goal could involve either maximizing or minimizing a specific criterion, 

such as a cost or fitness function, depending on the nature of the problem being addressed 

(Halim, Ismail, & Das, 2021). 

In essence, the objective function acts as a guiding compass for the algorithm, helping it 

discern the direction in which it should steer the search for better solutions. By quantifying the 

degree of alignment between a solution and the desired objective, it provides a means of ranking 

and comparing different solutions. This allows the algorithm to prioritize and select those solutions 

that show the most promise in achieving the optimization goal. The algorithm relies on this 

function to make informed decisions at each iteration, iteratively refining the solutions in pursuit 

of the overarching optimization objective.  
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5.3. Iterative refinement 

The core essence of a metaheuristic optimization algorithm revolves around a cyclic 

progression characterized by the following steps (Dokeroglu et al., 2019): 

1. Solution Selection: In the initial phase of an optimization algorithm, denoted as Solution 

Selection, the algorithm makes critical decisions concerning the choice of solutions from the 

current population for further refinement or evolution. The selection strategy adopted in this phase 

is contingent upon the particular optimization algorithm under consideration. Various methods 

have been proposed in the literature, encompassing techniques such as roulette wheel selection, 

tournament selection, and rank-based selection. The chosen solutions are deemed as potential 

candidates for the subsequent optimization iterations. 

2. Solution Modification: Following the Solution Selection phase, selected solutions 

undergo a series of transformative operations known as Solution Modification. These operations 

emulate natural or problem-specific processes, aiming to generate new candidate solutions with 

potentially improved qualities. Notable instances of such operations include crossover and 

mutation in Genetic Algorithms, as well as particle movement in Particle Swarm Optimization. 

Crossover involves combining genetic material from two or more parent solutions to create 

offspring, while mutation introduces random changes to a solution. The selection and 

configuration of these operators play a pivotal role in the algorithm’s efficacy. 

3. Evaluation: Subsequent to Solution Modification, the algorithm proceeds to the 

Evaluation phase. During this stage, the newly generated or modified solutions are subjected to a 

rigorous assessment using a predefined objective function. The primary objective is to ascertain 

the quality and fitness of these solutions in the context of the optimization problem. The objective 

function encapsulates the optimization problem’s goals, constraints, and requirements, and it 

provides a quantitative measure of how well a solution aligns with the problem’s objectives. 

4. Solution Replacement: Upon completing the Evaluation phase, the updated solutions 

are integrated back into the existing population in the Solution Replacement step. This integration 

may involve the replacement or repositioning of some of the pre-existing solutions based on 

various criteria, such as fitness, diversity enhancement, or algorithm-specific rules. This phase is 

pivotal for maintaining population diversity and promoting the convergence of the algorithm 

toward optimal or near-optimal solutions. 

5. Termination Criteria: Throughout the optimization process, the algorithm continually 

monitors predefined Termination Criteria to determine whether the search process should be 

concluded. Commonly employed termination criteria encompass reaching a maximum number of 

iterations, attaining a predefined target quality threshold, or encountering stagnation in the 

optimization process. It is imperative to balance computational resources with the search for better 

solutions, and the careful selection of termination criteria plays a vital role in achieving this balance. 

5.4. Balancing exploration and exploitation 

Exploration refers to the systematic diversification of search space exploration in order to 

discover novel and potentially superior solutions, while exploitation emphasizes the focused 

refinement and optimization of promising solutions (Morales-Castañeda, Zaldivar, Cuevas, 

Fausto, & Rodríguez, 2020). Achieving an optimal trade-off between these two strategies is 

imperative for the success of iterative algorithms in various applications (Halim et al., 2021). 

Conversely, the exploitation involves the concentrated refinement and optimization of 

solutions that have exhibited promise in terms of their quality or effectiveness. This entails the 

allocation of resources and effort towards fine-tuning and maximizing the utility of these solutions. 

Exploitation aims to capitalize on the known strengths of existing solutions, leveraging their 

attributes to their fullest potential. 
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The challenge of balancing exploration and exploitation arises from the inherent trade-off 

between these strategies. Overemphasis on exploration can lead to a lack of focus and scattered 

efforts, potentially delaying the convergence to optimal solutions. On the other hand, an excessive 

bias towards exploitation may result in premature convergence to suboptimal solutions, limiting 

the algorithm’s ability to discover superior alternatives (Hussain et al., 2019). 

5.5. Memory and diversity maintenance 

Memory retention within metaheuristics pertains to the preservation and utilization of 

information related to previously explored solutions. The concept of memory is preserved in 

various ways, including the storage of promising solutions, historical search trajectories, or 

knowledge about the problem structure. This retention of past knowledge serves the purpose of 

facilitating informed decisions during the search process, allowing the algorithm to capitalize on 

insights gained from prior explorations. These insights may manifest as adaptive parameters, 

guiding operators, or informed perturbation strategies, which collectively enhance the algorithm’s 

ability to exploit promising regions of the solution space (Akay, Karaboga, & Akay, 2022). 

On the other hand, diversity maintenance encompasses strategies employed to ensure that 

the solution population generated and manipulated by the metaheuristic remains sufficiently 

diverse (Castillo & Segura, 2020). The diversity of solutions is a vital aspect in the context of 

optimization, as it guards against premature convergence to local optima. Diverse populations 

provide the algorithm with a broader exploration capability, as they offer a wider array of 

perspectives on the solution space. To this end, various mechanisms such as diversification 

operators, population diversity measures, and selection schemes designed to preserve and enhance 

diversity, are integrated into metaheuristics (Parouha & Verma, 2021). 

6. Gradient-based algorithms vs. Metaheuristic algorithms in optimization 

Gradient-Based Optimization methods present several merits in optimization. They exhibit 

notable advantages, particularly their rapid convergence, especially when dealing with smooth and 

convex objective functions (Daoud et al., 2023).  

Moreover, their suitability for high-dimensional problems, coupled with their amenable 

parallelization, renders them highly efficient in resource-rich computational settings. Nonetheless, 

these techniques suffer from noteworthy limitations, including susceptibility to local minima 

entrapment, thereby rendering them less amenable for non-convex functions. Furthermore, they 

mandatorily necessitate the availability of gradient information, a requirement that may not always 

be met in various problem domains (Dalla, da Silva, Dutra, & Colaço, 2021). 

Conversely, Metaheuristic Algorithms provide a distinct set of advantages. They excel in 

solving intricate, non-convex problems characterized by discontinuous or noisy objective 

functions. Metaheuristic algorithms, characterized by their versatility, do not rely on gradient 

information, extending their applicability to a broader spectrum of optimization challenges. 

Notably, these algorithms exhibit proficiency in exploring diverse solutions, albeit at the cost of 

slower convergence rates for simpler functions, often necessitating substantial computational 

resources (Khanduja & Bhushan, 2021). Table 1 provides a Comparative Analysis of Optimization 

Algorithms: Gradient-Based vs. Metaheuristic Approaches 

Applications well-suited for Gradient-Based Optimization encompass diverse tasks such 

as training machine learning models, deep learning parameter tuning (Zhang, 2019), and select 

scientific simulations (Issa & Mostafa, 2022). In contrast, as discussed previously, Metaheuristic 

Algorithms prove particularly adept in addressing an array of complex objective functions and 

extensive search spaces (Agrawal et al., 2021).  
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Table 1 

A comparative analysis of optimization algorithms: Gradient-based vs. Metaheuristic approaches 

Algorithm aspect Gradient-based algorithms Metaheuristic algorithms 

Objective Function Typically differentiable 
Can be non-differentiable, 

complex, or black-box 

Search Space 

Exploration 

Systematic and focused on local 

optima 

Exploratory and aim to escape 

local optima 

Initialization 
Reliant on initial parameter 

guess 

Often uses random or heuristic 

initial solutions 

Update Rules 
Gradient-based with an explicit 

formula 

Diverse strategies and operations 

specific to the algorithm 

Termination Criteria 
Convergence-based (e.g., 

gradient norm or target value) 
Diverse termination conditions 

Deterministic vs. 

Stochastic 
Deterministic 

Often stochastic with random or 

heuristic elements 

Problem Applicability 
Well-suited for differentiable 

functions 

More versatile and applicable to 

a broader range of problems 

Use of Gradient 

Information 
Requires gradient information 

Does not rely on gradient 

information 

Table 2 

Gradient-based vs. Metaheuristic - advantages and disadvantages 

 Gradient-based algorithms Metaheuristic algorithms 

  
- Converge faster for smooth, 

convex functions 

- Suitable for complex, non-convex 

problems 

Advantages 
- Well-suited for high-

dimensional problems 
- No need for analytical derivatives 

  - Good for local optimization 
- Can handle discontinuous or noisy 

functions 

  - Easily parallelizable - Exploration of diverse solutions 

  - Can get stuck in local minima 
- Slower convergence on simple 

functions 

Disadvantages - Sensitive to initial conditions - Difficulty in fine-tuning parameters 

  
- Not suitable for discrete 

optimization 

- Lack of theoretical convergence 

guarantees 

  
- Assumes differentiability of the 

objective 
- Computationally intensive  

The selection between these two approaches predominantly hinges on the inherent nature 

of the optimization problem at hand and the availability of computational resources (Dalla et al., 

2021). Table 2, highlights the advantages and disadvantages of Gradient-Based Optimization and 

Metaheuristic-based Optimization. 
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7. Metaheuristic techniques for solution generation  

Metaheuristic algorithms encompass versatile optimization approaches applicable across 

diverse problem domains. These algorithms employ a variety of solution-generation techniques to 

traverse the solution space in pursuit of optimal or near-optimal solutions. Table 3 showcases a 

selection of the used solution-generation techniques in metaheuristic algorithms. 

The table illustrates a wide array of approaches employed in optimization algorithms. 

Some, such as the Genetic Algorithm and Particle Swarm Optimization, are based on population-

based methodologies, while others, such as Simulated Annealing and Tabu Search, adopt 

neighborhood search strategies.  

Additionally, the table underscores the prevalence of nature-inspired algorithms, with 

examples like Ant Colony Optimization and Firefly Algorithm emulating natural behaviors like 

ant foraging and firefly attraction, indicating a burgeoning interest in bio-inspired and evolutionary 

techniques for optimization challenges. Moreover, the inclusion of the YUKI algorithm, which 

employs a problem-specific approach involving exploration and exploitation, suggests that certain 

algorithms may be tailored to specific problem domains. Lastly, the algorithms vary in complexity, 

with Genetic Algorithm and Differential Evolution incorporating intricate processes like crossover 

and mutation, in contrast to simpler operations like perturbation found in Simulated Annealing. 

8. Metaheuristic techniques for balancing exploration and exploitation   

In each of these algorithms, the trade-off between exploration and exploitation is achieved 

through unique mechanisms, such as probabilistic models, dynamic parameters, and population-

based behaviors. The specific strategies employed by these algorithms determine their efficiency 

in solving different optimization problems. Balancing these two aspects effectively is a key 

challenge, and researchers often customize these algorithms to address the requirements of specific 

problem domains. The flexibility of metaheuristic algorithms in striking this balance makes them 

valuable tools in optimization tasks across various fields. Table 4 shows some distinctive 

Exploration and Exploitation behaviors that characterize each algorithm’s performance. 

The Table 4 encompasses examples of popular optimization algorithms. This assortment 

underscores the extensive spectrum of techniques utilized in solving optimization challenges. The 

table underscores the central trade-off between exploration, the quest for novel solutions, and 

exploitation, the refinement of known, promising solutions. Each algorithm employs distinctive 

strategies to strike a balance between these aspects. 

Additionally, the table delineates the specific techniques or attributes of each algorithm 

that contribute to their exploration and exploitation methods. For instance, Genetic Algorithms 

employ crossover and mutation to explore diverse populations and favor individuals with superior 

fitness, while Simulated Annealing accepts suboptimal solutions to shift towards exploiting the 

best ones. This adaptability allows their exploration and exploitation strategies to solve various 

problems. Such as, Ant Colony Optimization and Bee Colony Optimization, leverage both 

exploration and exploitation by permitting individuals to explore new paths while reinforcing 

exploitation through mechanisms like pheromone deposition or information sharing.  

Table 3 

Optimization algorithms and their solution-generation techniques 

Algorithm Solution-generation technique 

Genetic Algorithm (Holland, 1992) 
Uses genetic operators like Crossover and Mutation to 

evolve solutions 
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Algorithm Solution-generation technique 

Particle Swarm Optimization 

(Kennedy & Eberhart, 1995) 

Generates solutions by adjusting particle movement 

and updating 

YUKI algorithm (Benaissa et al., 

2021) 

Create a random distribution of points inside the local 

search area, and allocate part of it to exploration and 

the other part to exploitation 

Simulated Annealing (Van 

Laarhoven & Aarts,  1987) 
Perturbs solutions based on a temperature schedule 

Ant Colony Optimization (Ribeiro et 

al., 2002) 

Constructs solutions probabilistically by simulating ant 

behavior 

Tabu Search (Hertz et al., 1995) Explores neighborhoods guided by a tabu list 

Harmony Search (Geem et al., 2001) 
Generates solutions based on harmony memory and 

composition 

Differential Evolution (Lampinen et 

al., 2005) 

Creates solutions using mutation and crossover 

operations 

Firefly Algorithm (Yang & Slowik, 

2020) 

Generates solutions based on firefly attraction and 

movement 

Gravitational Search Algorithm 

(Rashedi, Nezamabadi-Pour, & 

Saryazdi, 2009) 

Simulates particle movement in a gravitational field to 

find solutions 

Cuckoo Search (Gandomi, Yang, & 

Alavi, 2013) 

Generates solutions using Lévy flights and nest 

replacement 

Bat Algorithm (Yang & Gandomi, 

2012) 
Updates solutions based on frequency and loudness 

Grey Wolf Optimizer (Mirjalili, 

Mirjalili, & Lewis, 2014) 
Finds solutions by encircling and attacking prey 

Artificial Bee Colony (Karaboga, 

2010) 

Utilizes employed bees, onlooker bees, and scout bees 

to find solutions 

Teaching-Learning-Based 

Optimization (Rao, Savsani, & 

Vakharia, 2011) 

Involves two phases, teacher and learner phases for 

solution generation 

Sinh Cosh Algorithm (Bai et al., 

2023)  
Represents solutions using sinusoidal waves 

The arithmetic optimization 

algorithm (Abualigah et al., 2021) 

Modify existing solutions using arithmetic operators   

Division, Multiplication, Subtraction, and Addition 

Table 4 

Exploration and exploitation strategies in optimization algorithms 

 Algorithm Name Exploration Exploitation 

Genetic Algorithms 

(Holland, 1992) 

- Creation of diverse 

populations 

- Favoring individuals with better 

fitness 
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 Algorithm Name Exploration Exploitation 

- Crossover and mutation 

operations 

- Concentrating search efforts on 

promising solutions 

Particle Swarm 

Optimization 

(Kennedy & Eberhart, 

1995) 

- Using social and cognitive 

learning 

- Converging toward best-known 

solutions 

- Guiding particles to explore 

different areas 

- Adjusting positions based on 

experiences 

YUKI algorithm 

(Benaissa et al., 2021) 

- Using historical personal best 

locations 

- Exploitation toward best-known 

solutions 

- Allocate part of the 

population to explore outside 

the local search area 

- Adjusting the size of the local 

search area based on the progress of 

the search 

Simulated Annealing 

(Van Laarhoven & 

Aarts, 1987) 

- Allowing acceptance of 

worse solutions 

- Shifting toward exploiting the best 

solutions 

- With decreasing probability 
- Converging toward a global 

optimum 

Ant Colony 

Optimization (Ribeiro 

et al., 2002) 

- Allowing ants to explore new 

paths 

- Reinforcing exploitation through 

pheromone deposition 

- Based on pheromone 

evaporation and choices 

- Guiding ants toward successful 

solutions 

Tabu Search (Hertz et 

al., 1995) 

- Preventing revisiting 

explored solutions 

- Considering previously visited 

solutions if showing potential 

- Promoting exploration 
- For improvement, leading to 

exploitation 

Differential Evolution 

(Lampinen et al., 

2005) 

- Generating diverse trial 

solutions 

- Preferring individuals with better 

fitness 

- Using differential operators 
- Promoting exploitation of 

promising solutions 

Harmony Search 

(Geem et al., 2001) 

- Introducing randomness in 

note generation 

- Leading to exploitation by 

memory and pitch adjustments 

- Emphasizing exploration - Emphasizing promising harmonies 

Firefly Algorithm 

(Yang & Slowik, 

2020) 

- Random movement of 

fireflies 

- Converging toward the brightest 

fireflies 

- Exploring different areas 
- Promoting exploitation through 

light intensity 

Bat Algorithm (Yang 

& Gandomi, 2012) 

- Using echolocation for 

random exploration 

- Locating and exploiting the best 

solutions as the algorithm 

progresses 

- Emitting frequency-tuned 

pulses 

- Adjusting emission intensity and 

loudness 
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 Algorithm Name Exploration Exploitation 

Glowworm Swarm 

Optimization 

(Krishnanand & 

Ghose, 2009) 

- Modeling the behavior of 

glowworms and their spatial 

awareness for exploration 

- Promoting the exploitation of 

brighter neighbors 

Krill Herd Algorithm 

(Gandomi & Alavi, 

2012) 

Employing random movements 

of krill to explore different 

areas. 

Attracting krill toward promising 

solutions through interactions 

Bee Colony 

Optimization 

(Karaboga, 2010) 

- Random selection of bees for 

exploration 

- Sharing information and 

exploiting best solutions with other 

bees 

- Visiting different solutions 
- Promoting exploitation through 

information sharing 

Dragonfly Algorithm 

(Mirjalili, 2016a) 

- Mimicking the hunting 

behavior of dragonflies for 

exploration 

- Concentrating on capturing the 

most promising prey 

Jaya Algorithm (Rao, 

2016) 

Focusing the search away from 

the best-known solution 

Focusing on improving the best-

known solutions 

Gravitational Search 

Algorithm (Rashedi et 

al., 2009) 

- Modeling gravitational 

attraction of masses 

- Converging toward promising 

solutions 

- Moving masses randomly to 

explore 

- Promoting exploitation through 

gravitational attraction 

The arithmetic 

optimization 

algorithm (Abualigah 

et al., 2021) 

- Diversify the search by 

exploring different regions 

- Choice of which operator to use is 

based on random values 

- Move away from the current 

best solution   

- Intensively searches for the near-

optimal solution 

Monkey Search 

(Mucherino & Seref, 

2007) 

- Mimicking the climbing and 

exploration behavior of 

monkeys 

- Concentrating on the best-known 

solutions found during climbing 

Vortex Search 

Algorithm (Doğan & 

Ölmez, 2015) 

Applying a vortex concept to 

generate diversity in the search 

Concentrating on improving 

solutions within the vortex 

Termite life cycle 

optimizer (Le, To, 

Theraulaz, Wahab, & 

Le, 2023) 

- Create reproductive termites 

when workers are not 

successful 

- Soldiers are responsible for 

exploiting known promising 

solutions 

- Randomness to the 

movement and decision-

making of termites 

- Focusing on the best-known 

solution 

Figures 1 to 5 depict the search behaviors of five distinct optimization algorithms, namely 

Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Differential Evolution (DE), 

Teaching-Learning-Based Optimization (TLBO), and the YUKI algorithm. Two distinct test 

functions are employed in this analysis: the unimodal sphere function (denoted as Function (a)), 

which is particularly amenable to exploitation-oriented algorithms, and the multimodal Schwefel 

function (denoted as Function (b)), which is more suitable for exploration-oriented algorithms. 
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In each algorithmic evaluation, 500 particles are utilized, and the search process is iterated 

for a duration of 10 iterations. The primary objective is to visualize and assess the progressive 

evolution of the search process. These figures provide a comprehensive representation of the 

spatial distribution of the population of solutions at each iteration, offering insights into the extent 

of the search space explored by the population throughout the optimization process. 

In PSO, exploration occurs as particles move randomly through the solution space, and 

exploitation is promoted through movement towards better solutions (Figure 1). Similarly, in 

GWO algorithm, wolves within the pack take on the role of explorers, venturing into uncharted 

solution spaces, while others act as exploiters, refining and improving upon the best solutions 

identified so far (Figure 2). In DE, however, individuals in the population are subjected to a 

mutation operation that creates a new candidate solution by taking the difference between two 

existing solutions and adding it to a third solution. Additionally, DE also uses strategies for 

recombination and selection to reinforce the exploitation of promising solutions (Figure 3). 
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Figure 1. Particle Swarm Optimization search behavior, average computational time 0.092s 
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Figure 2. Grey Wolf Optimizer search behavior, average computational time 0.081s 
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Figure 3. Differential Evolution search behavior, average computational time 0.085s 
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Figure 4. Teaching-Learning-Based Optimization search behavior,  

average computational time 0.181s 

 

 

 

(a) 

 

 

 

(b) 

 

Figure 5. YUKI Algorithm search behavior, average computational time 0.083s 

During the teaching phase of the TLBO algorithm, individuals with better solutions “teach” 

or share their knowledge with those who have poorer solutions. This knowledge transfer 

encourages exploitation, as it helps the population converge towards better solutions. In the 

learning phase, individuals learn from their peers and adjust their solutions based on the 

information received. This phase fosters exploration, as individuals incorporate new ideas and 

approaches from others into their solutions, potentially leading to the discovery of novel and 

improved solutions, these rules encourage the search behavior shown in Figure 4.  YUKI algorithm 

performs both tasks simultaneously by focusing part of the population to search around the best 

solution found so far and the rest to explore outside the local search area, which develops into a 

powerful search behavior as seen in Figure 5. 

9. Conclusion  

This paper provides a comprehensive exploration of the core components, techniques, and 
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strategies inherent to metaheuristic algorithms. It underscores the pivotal role played by the 

delicate equilibrium between exploration and exploitation in optimizing solutions. Moreover, it 

conducts a discerning comparison between the merits and limitations of metaheuristic algorithms 

and gradient-based optimization methods, offering insights into their applicability within diverse 

problem domains and under varying resource constraints.  

Examining a diverse range of solution-generation techniques across various algorithms 

emphasizes their remarkable versatility and adaptability. These methodologies prove highly 

effective in tackling a broad spectrum of optimization challenges. Additionally, the paper 

examines the specific strategies employed by these algorithms. Adding visual representations of 

how certain metaheuristic algorithms behave enhances our grasp of how they work in both research 

and real-world applications. These visuals offer a practical insight into the processes involved.  

In the future direction of metaheuristic optimization algorithms, it is imperative to address 

and overcome the identified limitations to enhance their efficacy. Encouraging a shift towards 

simplicity and a clear theoretical foundation may prove beneficial in mitigating challenges. By 

emphasizing a more straightforward and theoretically grounded approach, future developments in 

metaheuristic algorithms can strive to provide solutions that are not only effective in addressing 

complex optimization challenges but also more interpretable and easier to configure. 
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