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In this paper, relatively new higher-order shear deformation 

theories are presented for a thorough analysis of the in-plane and out-

of-plane vibrational characteristics of laminated composite beams. 

Through the introduction of new displacement fields and the 

consideration of rotary inertia and Poisson’s effect, the kinetic and 

potential energies of the beams have been derived. This formulation, 

displaying significant generality, accommodates arbitrary stacking 

sequences. Utilizing the finite element method, a new element has 

been presented for calculating the beam’s vibrational characteristics. 

Featuring three nodes, each with seven degrees of freedom, this 

higher-order element provides a detailed representation of complex 

behaviors. Mass and stiffness matrices have been derived using the 

energy method and apply boundary conditions through the penalty 

approach. The results exhibit good degree of consistency and 

alignment with those obtained from the 3D commercial software 

ANSYS, validating the accuracy and reliability of the proposed 

methodology for structural analysis. This comprehensive approach 

contributes to advancing the understanding and modeling of 

laminated composite beams in diverse engineering applications. The 

effects of different parameters on the in-plane and out-of-plane 

vibration analysis of laminated composite beams have been 

investigated in detail. 

1. Introduction  

Vibration analysis of laminated composite beams plays a vital role in various engineering 

applications, offering valuable insights into the structural integrity, performance, and safety of 

complex structures. Laminated composite beams are extensively employed in aerospace, 

automotive, civil and mechanical engineering, and marine industries due to their superior strength-

to-weight ratio and tailored physical properties. Vibration analysis of laminated composite beams 

is crucial for identifying natural frequencies, mode shapes, and potential resonance issues, 

allowing engineers to optimize designs and prevent structural failures. Additionally, it serves as 

an early warning system for damage detection and structural health monitoring, ensuring the safety 

and reliability of critical components in industries like aerospace. 

In the vibration analysis of laminated composite beams and due to their composite nature, 

they often exhibit complex deformation patterns involving both in-plane and out-of-plane 

movements, so it is crucial to account for out-of-plane deformation alongside the in-plane 

deformation. Additionally, higher-order displacement fields provide a more accurate 

representation of the beam’s deformation behavior. Considering both out-of-plane deformation 

and higher-order displacement fields in the analysis ensures a more comprehensive and precise 

understanding of the beam’s vibrational characteristics, leading to improved engineering designs 

and structural performance. 
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Numerous studies have explored the in-plane free vibration analysis of laminated 

composite beams (Alazwari, Mohamed, & Eltaher, 2022; Aydogdu, 2006; Bui, Nguyen, Nguyen, 

& Vo, 2022; Chandrashekhara, Krishnamurthy, & Roy, 1990; Chandiramani, Librescu, & Shete, 

2002; Jafari-Talookolaei, Abedi, Kargarnovin, & Ahmadian, 2012; Hijmissen & Van Horssen, 

2008; Kant & Gupta, 1988; Kant, Marur, & Rao, 1998; Karama, Afaq, & Mistou, 2003; Kim, Kim, 

Ri, Paek, & Kim, 2021; Krishnaswamy, Chandrashekhara, & Wu, 1992; Matsunaga, 2001, 2002; 

Nguyen, Nguyen, Vo, & Thai, 2020; Ren, Cheng, Meng, Yu, & Zhao, 2021; So, Yun, Ri, 

Ryongsik, & Yun, 2021; Subramanian, 2006; Pavan, Muppidi, & Dixit, 2022; Zhen & Wanji, 

2008), whereas relatively few have delved into the in-plane and out-of-plane free vibration 

analyses (Boukhalfa, Hadjoui, & Cherif, 2008; Jafari-Talookolaei, Abedi, & Attar, 2017; Jafari-

Talookolaei et al., 2022; Seraj & Ganesan, 2018). In the following paragraphs, the various 

deformation theories employed in these research works, including classical, first-order, and higher-

order shear deformation theories will be reviewed. 

A higher-order shear-deformable beam model theory has been formulated by Kant and 

Gupta (1988). This theory encompasses both linear and quadratic variations of transverse normal 

strain and transverse shearing strain along the thickness of the beam. The impacts of transverse 

normal and shear stresses are integrated into the material’s constitutive law. The finite element 

method has been employed to derive the solution. Chandrashekhara et al. (1990) conducted a study 

on the free vibration of symmetrical laminated composite beam. Their analysis incorporated first-

order shear deformation theory and rotary inertia, while Poisson’s effect has been omitted. The 

study provides solutions for the free vibration of symmetrically laminated composite beams. 

Dynamic equations governing the free vibration of laminated composite beams have been derived 

through the application of Hamilton’s principle by Krishnaswamy et al. (1992). In their 

formulation, the effects of transverse shear, rotary inertia, and the Poisson’s effect have been taken 

into account. Analytical solutions have been obtained using the method of Lagrange multipliers, 

wherein the free vibration problem has been treated as a constrained variational problem, with 

constraints introduced through Lagrange multipliers. To showcase the effectiveness of this 

methodology, natural frequencies and mode shapes of both clamped-clamped and clamped-

supported composite beams are presented. Importantly, the results highlight the significant role 

played by the Poisson’s effect in achieving accurate outcomes. 

Kant et al. (1998) introduced an analytical solution for the natural frequency analysis of 

laminated composite beams, using a higher-order refined theory. This theory integrates cubic axial, 

transverse shear, and quadratic transverse normal strain components into its fundamental 

formulation. Moreover, it characterizes each lamina layer as orthotropic and in a two-dimensional 

plane stress state. The analysis of the natural frequencies and buckling stresses in laminated 

composite beams has been done by considering the full influence of transverse shear and normal 

stresses, as well as rotatory inertia effects (Matsunaga, 2001). Using a power series expansion 

method for displacement components, a set of fundamental dynamic equations based on a one-

dimensional higher-order theory for laminated composite beams under axial stress has been 

obtained. 

Chandiramani et al. (2002) conducted the analysis of the in-plane free vibrations in rotating 

composite beams by employing a higher-order shear formulation. This study included the 

presentation of linearized dynamical equations and numerical findings related to the problem of 

free vibration. To provide a comprehensive assessment, the results obtained using the present 

higher-order shearable model have been compared with those derived from existing first-order 

shearable and non-shearable structural models. Stresses and displacements in laminated composite 

beams under lateral pressures have been analyzed using a comprehensive global higher-order beam 

theory by Matsunaga (2002). This advanced theory effectively incorporates the influence of both 

transverse shear and normal stresses. To derive the foundational equilibrium equations for a one-

dimensional higher-order theory applicable to laminated composite beams, the method of power 

https://www.sciencedirect.com/author/57210776133/rajamohan-ganesan
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series expansion of displacement components is employed, grounded in the principle of virtual 

work. Subsequently, a series of truncated approximate theories are employed to address boundary 

value problems for simply supported laminated composite beams. 

Karama et al. (2003) studied the various higher-order beam theories and subjected to 

comparative analysis. This assessment has encompassed investigations into their free vibration 

properties, as well as comprehensive examinations of bending and buckling behaviors. Vibration 

analysis of angle-ply laminated beams under various boundary conditions has been conducted by 

Aydogdu (2006). This investigation has relied on the application of a three-degrees-of-freedom 

shear deformable beam theory. The natural frequencies of free vibrations have been determined 

using the Ritz method, with the three displacement components being represented as 

straightforward algebraic polynomial series. 

Subramanian (2006) studied the free vibration analysis of laminated composite beams, 

utilizing two higher-order displacement-based shear deformation theories and corresponding finite 

elements. Both theories have adopted quintic and quartic variations for in-plane and transverse 

displacements within the beams’ thickness coordinates. The key distinction between the two 

theories lies in their treatment of transverse shear stress distribution. The first theory assumes a 

non-parabolic variation, while the second theory adopts a parabolic distribution. The equations of 

motion have been derived via Hamilton’s principle, and two-node C1 finite elements with eight 

degrees of freedom per node based on these theories for the free vibration analysis of the beams 

have been introduced. Zhen and Wanji (2008) evaluated multiple displacement-based theories by 

examining both the free vibration and buckling characteristics of laminated beams with arbitrary 

configurations, as well as soft-core sandwich beams. Analytical solutions for all the scenarios 

under consideration have been derived using Navier’s method, involving the solution of 

eigenvalue equations. 

The transverse vibrations of a stationary, uniform Timoshenko beam were investigated by 

Hijmissen and Horssen (2008). This beam experienced a linearly varying compression force due 

to gravity and its own weight. It is important to note that this compression force, while relatively 

small, cannot be considered negligible. To tackle this problem, approximations for the solution 

using a perturbation method based on multiple time scales was developed. Jafari-Talookolaei et 

al. (2012) investigated the free vibration analysis for a generally laminated composite beam, 

employing the Timoshenko beam theory. This analysis comprehensively considered the impact of 

material couplings, including bending-tension, bending-twist, and tension-twist couplings, while 

also accounting for the effects of shear deformation, rotary inertia, and Poisson’s effect. This 

analysis has been carried out through the application of the method of Lagrange multipliers, 

wherein the free vibration problem is formulated as a constrained variational problem. As a result, 

analytical expressions for the natural frequencies and mode shapes of the system have been 

presented. 

Utilizing the foundational equations of elasticity theory, a novel unified beam model was 

formulated for laminated composite beams by Nguyen et al. (2020). This model adopts a unified 

displacement field, which has been designed to seamlessly transition into existing shear 

deformation beam theories found in the literature. The governing equations are solved to determine 

deflections, stresses, natural frequencies, and critical buckling loads of composite beams. This 

analysis encompasses various boundary conditions and lay-ups and incorporating innovative 

hybrid trigonometric functions. Kim et al. (2021) presented a semi-analytical method for analyzing 

the forced vibration of cracked laminated composite beams. The model is based on the 

Timoshenko beam theory and solved dynamically using the Jacobi-Ritz method. To address 

boundary conditions at both ends of the composite laminated beam, the artificial elastic springs 

has been employed. For analyzing the dynamic characteristics of the CLCB, all allowable 

displacement functions are expressed in a generalized form, employing classical Jacobi orthogonal 
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polynomials. The accuracy of the approach through a comparison with results have been obtained 

from the finite element method (utilizing ABAQUS software). 

A novel third-order zigzag model tailored for both asymmetric and symmetric laminated 

composite beams was introduced by Ren et al. (2021). Within the context of a general displacement 

framework, a fresh zigzag shear strain shape function has been proposed. This function 

incorporated layerwise coefficients encompassing constant, linear, quadratic, and cubic terms. The 

free vibration characteristics of arbitrarily shaped laminated composite beams under generalized 

elastic boundary conditions were investigated by So et al. (2021). The Haar wavelet discretization 

method has been employed to analyze these vibrations. The Timoshenko beam theory serves as 

the fundamental model for the free vibration behavior of the Laminated Composite Beam (LCB). 

The present approach involves dividing the LCB into multiple segments, after which the 

displacement for each segment through the Haar wavelet series and subsequent integration has 

been determined. 

Pavan et al. (2022) presented a computational approach for analyzing laminated beams by 

employing classical laminated theory, first-order shear deformation theory, and higher-order shear 

deformation theory. Each of these kinematic theories has been utilized to develop computational 

methods for analyzing laminated composite beams, applying the Isogeometric Analysis with 

Collocation (IGA-C) method. A mathematical model was developed by Alazwari et al. (2022) to 

predict the dynamic response of a laminated composite beam under varying axial loads, utilizing 

a third higher-order shear deformation beam theory. The geometrical kinematic relations of 

displacements have been described using the higher parabolic shear deformation beam theory. The 

distribution of the variable axial load has been accomplished along the axial direction through 

constant, linear, and parabolic functions. The variable coefficients-differential equations of motion 

have been discretized in the spatial direction using the numerical differential quadrature method. 

A comprehensive higher-order shear deformation theory tailored for the buckling and free 

vibration analysis of thin-walled composite I-beams was presented by Bui et al. (2022). This theory 

builds upon a unified nonlinear variation of shear strains across the wall thickness. To address 

various boundary conditions, series-type solutions employing hybrid shape functions, enhancing 

the versatility of present approach for practical applications have been developed. 

Boukhalfa et al. (2008) studied the dynamic performance of a rotating composite shaft 

mounted on rigid bearings. Both in-plane and out-of-plane deformations of the composite shaft 

have been taken into account. To analyze the natural frequencies of the rotating composite shaft, 

a hierarchical beam finite element with six degrees of freedom per node has been developed in this 

investigation. Dynamic instability analysis on doubly-tapered cantilever composite beams 

subjected to periodic rotational velocity was investigated by Seraj and Ganesan (2018). The 

analysis encompasses three types of vibrations: out-of-plane bending (flap), in-plane bending 

(lag), and axial vibrations. To investigate these vibrations, the Rayleigh-Ritz method and classical 

lamination theory in conjunction with an energy-based formulation has been employed. 

Novel formulations for analyzing the in-plane and out-of-plane vibrations in both non-

rotating and rotating laminated composite beams were introduced by Jafari-Talookolaei et al. 

(2017), Jafari-Talookolaei et al. (2022), respectively. These formulations take into account 

material couplings, Poisson’s effect, shear deformation, and rotary inertia. The study presents both 

analytical and finite element solutions for these comprehensive analyses. 

As the literature review indicates, the in-plane vibrations of laminated composite beams 

have been extensively studied. However, both in-plane and out-of-plane vibrations of composite 

beams have received much less attention, with most studies primarily using first-order shear 

deformation theory. Therefore, this paper introduces relatively new higher-order shear 

deformation theories for analyzing the in-plane and out-of-plane free vibrations of laminated 

composite beams. The subsequent sections cover several key aspects of this research. Firstly, the 
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new displacement fields and their corresponding formulations are presented. Following that, a 

finite element solution for addressing the problem is introduced. Finally, the numerical results are 

compared with outcomes obtained from the commercial software ANSYS to validate the accuracy 

and efficiency of our modeling approach. 

2. Mathematical modelling 

Figure 1 illustrates a laminated composite beam characterized by its length (L), thickness 

(h), and width (b). The right-handed coordinate system (xyz) is situated at the left end of the beam. 

 

Figure 1. Schematic Representation of the laminated composite beam 

The following higher order displacement field has been considered: 

(1) 

𝑢(𝑥, 𝑦, , 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧𝑤0,𝑥 − 𝑦𝑣0,𝑥 + 𝑓(𝑧) 𝜓(𝑥, 𝑡) + 𝑔(𝑦) 𝜃(𝑥, 𝑡) 

𝑣(𝑥, 𝑦, , 𝑧, 𝑡) = 𝑣0(𝑥, 𝑡) 

𝑤(𝑥, 𝑦, , 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) 

in which 𝑢, 𝑣, and 𝑤 are the displacement of an arbitrary point in the x-, y-, and z-directions, 

respectively. Furthermore, 𝑢0, 𝑣0, and 𝑤0 are the corresponding values of beam’s midplane, 𝜓 and 

𝜃 are variables to capture the magnitude of the cross-sectional distortion (Groh & Weaver, 2015), 

t is the time and: 

(2-a) 𝑔(𝑦) =
𝑦

2
[
𝑏2

4
−
𝑦2

3
] 𝑓(𝑧) =

𝑧

2
[
ℎ2

4
−
𝑧2

3
] Type 1: 

(2-b) 𝑔(𝑦) = 𝑦 [1 −
4𝑦2

3𝑏2
] 𝑓(𝑧) = 𝑧 [1 −

4𝑧2

3ℎ2
] Type 2: 

(2-c) 𝑔(𝑦) =
𝑏

𝜋
sin (

𝜋𝑦

𝑏
) 𝑓(𝑧) =

ℎ

𝜋
sin (

𝜋𝑧

ℎ
) Type 3: 

(2-d) 𝑔(𝑦) = 𝑏 sinh (
𝑦

𝑏
) − 𝑦 cosh (

1

2
) 𝑓(𝑧) = ℎ sinh (

𝑧

ℎ
) − 𝑧 cosh (

1

2
) Type 4: 

(2-e) 𝑔(𝑦) = 𝑦 𝑒−2(𝑦/𝑏)
2
 𝑓(𝑧) = 𝑧 𝑒−2(𝑧/ℎ)

2
 Type 5: 

In equation 1 and the subsequent equations, comma represents differentiation with respect 

to the variable that follows it. 

It should be noted that the higher-order functions described above have previously been 

employed by other researchers for in-plane analysis (Ambartsumyan, 1958; Belabed, Tounsi, 
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Bousahla, et al., 2024; Bui, Tounsi, Do, Nguyen, & Phung, 2024; Dao et al., 2023; Karama et al., 

2003; Meftah et al., 2024; Mesbah et al., 2023; Reddy, 1986; Soldatos, 1992; Touratier, 1991; 

Pham, Nguyen, & Tounsi, 2022), but in this context, they are applied for out-of-plane analysis. 

It should be noted that there are other higher-order theories that have been examined by 

others (Belabed, Tounsi, Al-Osta, Tounsi, & Minh, 2024; Lakhdar et al., 2024) in the analysis of 

in-plane vibrations of beams, but they have been disregarded in this article. 

Using the strain-displacement relations, the non-zero strains are as follows: 

(3-a) 
𝛾𝑥 = 𝑢,𝑥 = 𝑢0,𝑥 − 𝑧𝑤0,𝑥𝑥 − 𝑦𝑣0,𝑥𝑥 + 𝑓(𝑧)𝜓,𝑥 + 𝑔(𝑦) 𝜃,𝑥

= 𝛾𝑥
0 + 𝑧𝜅1𝑥 + 𝑦𝜅2𝑥 + 𝑓(𝑧)𝜅3𝑥 + 𝑔(𝑦) 𝜅4𝑥 

(3-b) 𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 = 𝑔,𝑦𝜃 

(3-c) 𝛾𝑥𝑧 = 𝑢,𝑧 + 𝑤,𝑥 = 𝑓,𝑧𝜓 

in which: 

(4) 𝛾𝑥
0 = 𝑢0,𝑥,     𝜅1𝑥 = −𝑤0,𝑥𝑥,     𝜅2𝑥 = −𝑣0,𝑥𝑥, 𝜅3𝑥 = 𝜓,𝑥,         𝜅4𝑥 = 𝜃,𝑥 

Considering the Poisson’s effect, the modified stress-strain relations can be obtained as 

(Jafari-Talookolaei et al., 2017): 

{
𝜎𝑥
𝜏𝑥𝑦

}
(𝑘)

= [
�̿�11 �̿�16

�̿�16 �̿�66
]

(𝑘)

{
휀𝑥
𝛾𝑥𝑦
}
(𝑘)

 (5-a) 

𝜏𝑥𝑧
(𝑘) = �̿�55

(𝑘)
𝛾𝑥𝑧

(𝑘) (5-b) 

where: 

�̿�11 = �̅�11 −
�̅�12

2

�̅�22
,            �̿�16 = �̅�16 −

�̅�12�̅�26

�̅�22
,         �̿�66 = �̅�66 −

�̅�26
2

�̅�22
 (6-a) 

�̿�55 = �̅�55 −
�̅�45

2

�̅�44
 (6-b) 

in which �̅�𝑖𝑗 are the reduced stiffness of the kth layer (Reddy, 2004). 

Strain potential energy can be written as: 

Substituting equation 3 into equation 7, we have: 

𝑈 =
1

2
∫ ∫ ∫ (𝜎𝑥

(𝑘)(휀𝑥
0 + 𝑧𝜅1𝑥 + 𝑦𝜅2𝑥 + 𝑓(𝑧)𝜅3𝑥 + 𝑔(𝑦) 𝜅4𝑥)

ℎ/2

−ℎ/2

𝑏/2

−𝑏/2

𝐿

0

+ 𝜏𝑥𝑦
(𝑘)(𝑔,𝑦𝜃) + 𝜏𝑥𝑧

(𝑘)(𝑓,𝑧𝜓)) 𝑑𝑧 𝑑𝑦 𝑑𝑥 

(8) 

We can define the below resultant forces and moments: 

𝑈 =
1

2
∫ ∫ ∫ (𝜎𝑥

(𝑘)휀𝑥
(𝑘) + 𝜏𝑥𝑦

(𝑘)𝛾𝑥𝑦
(𝑘) + 𝜏𝑥𝑧

(𝑘)𝛾𝑥𝑧
(𝑘))𝑑𝑧

ℎ/2

−ℎ/2

𝑑𝑦
𝑏/2

−𝑏/2

𝑑𝑥
𝐿

0

 (7) 
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{
  
 

  
 
𝑁𝑥
𝑁𝑥𝑦
𝑀1𝑥
𝑀2𝑥

𝑀3𝑥

𝑀4𝑥

𝑄𝑥𝑧}
  
 

  
 

= ∫ ∫

{
 
 
 
 

 
 
 
 

𝜎𝑥
(𝑘)

𝜏𝑥𝑦
(𝑘)𝑔,𝑦

𝜎𝑥
(𝑘)𝑧

𝜎𝑥
(𝑘)𝑦

𝜎𝑥
(𝑘)𝑓(𝑧)

𝜎𝑥
(𝑘)𝑔(𝑦)

𝜏𝑥𝑧
(𝑘)𝑓,𝑧 }

 
 
 
 

 
 
 
 

𝑑𝑧 𝑑𝑦
ℎ/2

−ℎ/2

𝑏/2

−𝑏/2

 (9) 

Upon substituting equations 3 and 5 into equation 9 and performing some calculations, we 

obtain the below expressions for resultant forces and moments: 

where: 

(𝐴𝑖𝑗
𝐹 , 𝐵𝑖𝑗

𝐹) = ∫ �̿�𝑖𝑗
(𝑘)𝐹(1, 𝑧) 𝑑𝑦 𝑑𝑧

⬚

⬚

       (𝑖, 𝑗 = 1,6), (𝑖 = 𝑗 = 5) 

𝐷11 =
𝑏

3
∑�̿�11

(𝑘)(𝑧𝑘+1
3 − 𝑧𝑘

3)

𝑛𝑡

𝑘=1

 

(11) 

where 𝑧𝑘 and 𝑧𝑘+1 represent the distances from the bottom and top faces of the kth layer, 

respectively, in relation to the midplane. 

Equation 8 can be written as: 

𝑈 =
1

2
∫ [𝑁𝑥휀𝑥

0 +𝑀1𝑥𝜅1𝑥 +𝑀2𝑥𝜅2𝑥 +𝑀3𝑥𝜅3𝑥 +𝑀4𝑥𝜅4𝑥 + 𝑁𝑥𝑦𝜃 + 𝑄𝑥𝑧𝜓]𝑑𝑥
𝐿

0

 (12) 

By employing the equations 10 and 4 into equation 12, we have: 

{
  
 

  
 
𝑁𝑥
𝑁𝑥𝑦
𝑀1𝑥
𝑀2𝑥

𝑀3𝑥

𝑀4𝑥

𝑄𝑥𝑧}
  
 

  
 

=

[
 
 
 
 
 
 
 
 
 
 𝐴11 𝐴16

𝑔,𝑦 𝐵11 0 𝐴11
𝑓

𝐴11
𝑔

0

𝐴16
𝑔,𝑦 𝐴66

𝑔,𝑦
2

𝐵16
𝑔,𝑦 𝐴16

𝑦𝑔,𝑦 𝐴16
𝑓𝑔,𝑦 𝐴16

𝑔𝑔,𝑦 0

𝐵11 𝐵16
𝑔,𝑦 𝐷11 0 𝐵11

𝑓
𝐵11
𝑔

0

0 𝐴16
𝑦𝑔,𝑦 0 (𝑏2/12)𝐴11 0 𝐴11

𝑦𝑔
0

𝐴11
𝑓

𝐴16
𝑓𝑔,𝑦 𝐵11

𝑓
0 𝐴16

𝑓2
𝐴16
𝑓𝑔

0

𝐴11
𝑔

𝐴16
𝑔𝑔,𝑦 𝐵11

𝑔
𝐴11
𝑦𝑔

𝐴16
𝑓𝑔

𝐴16
𝑔2

0

0 0 0 0 0 0 𝐴55
𝑓,𝑧
2

]
 
 
 
 
 
 
 
 
 
 

{
  
 

  
 
휀𝑥
0

𝜃
𝜅1𝑥
𝜅2𝑥
𝜅3𝑥
𝜅4𝑥
𝜓 }
  
 

  
 

 (10) 
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(13) 

𝑈 =
1

2
∫ [𝐴11𝑢0,𝑥

2 + 𝐴66
𝑔,𝑦

2

𝜃2 + 𝐷11𝑤0,𝑥𝑥
2 +

𝑏2

12
𝐴11𝑣0,𝑥𝑥

2 + 𝐴11
𝑓2
𝜓,𝑥
2 + 𝐴11

𝑔2
𝜃,𝑥
2

𝐿

0

+ 2𝐴16
𝑔,𝑦𝑢0,𝑥𝜃 − 2𝐵11𝑢0,𝑥𝑤0,𝑥𝑥 + 2𝐴11

𝑓
𝑢0,𝑥𝜓,𝑥 + 2𝐴11

𝑔
𝑢0,𝑥𝜃,𝑥

− 2𝐵16
𝑔,𝑦𝑤0,𝑥𝑥𝜃 − 2𝐴16

𝑦𝑔,𝑦𝜃𝑣0,𝑥𝑥 + 2𝐴16
𝑓𝑔,𝑦𝜃𝜓,𝑥 + 2𝐴16

𝑔𝑔,𝑦𝜃𝜃,𝑥

− 2𝐵11
𝑓
𝜓,𝑥𝑤0,𝑥𝑥 − 2𝐵11

𝑔
𝜃,𝑥𝑤0,𝑥𝑥 − 2𝐴11

𝑦𝑔
𝜃,𝑥𝑣0,𝑥𝑥 + 2𝐴11

𝑓𝑔
𝜃,𝑥𝜓,𝑥

+ 𝐴55
𝑓,𝑧
2

𝜓2] 𝑑𝑥 

The kinetic energy can be written as: 

𝑇 =
1

2
∫ ∫ ∫ 𝜌(𝑘)(𝑢,𝑡

2 + 𝑣,𝑡
2 + 𝑤,𝑡

2)𝑑𝑧
ℎ/2

−ℎ/2

𝑑𝑦
𝑏/2

−𝑏/2

𝑑𝑥
𝐿

0

 (14) 

By substituting the displacement field, equation 1, into equation 14, we have: 

𝑇 =
1

2
∫ [𝐼1(𝑢0,𝑡

2 + 𝑣0,𝑡
2 + 𝑤0,𝑡

2 ) + 𝐼3𝑤0,𝑥𝑡
2 + 𝐼1

𝑏2

12
𝑣0,𝑥𝑡
2 + 𝐼1

𝑓2
𝜓,𝑡
2 + 𝐼1

𝑔2
𝜃,𝑡
2

𝐿

0

− 2𝐼2𝑢0,𝑡𝑤0,𝑥𝑡 + 2𝐼1
𝑓
𝑢0,𝑡𝜓,𝑡 + 2𝐼1

𝑔
𝑢0,𝑡𝜃,𝑡 − 2𝐼2

𝑓
𝑤0,𝑥𝑡𝜓,𝑡

− 2𝐼2
𝑔
𝑤0,𝑥𝑡𝜃,𝑡 − 2𝐼1

𝑦𝑔
𝑣0,𝑥𝑡𝜃,𝑡 + 2𝐼1

𝑓𝑔
𝜃,𝑡𝜓,𝑡] 𝑑𝑥 

(15) 

in which: 

(𝐼1
𝐹, 𝐼2

𝐹) = ∫ 𝜌(𝑘)
⬚

⬚

𝐹(1, 𝑧) 𝑑𝑦 𝑑𝑧𝑏,     𝐼3 =
𝑏

3
∑𝜌(𝑘)(𝑧𝑘+1

3 − 𝑧𝑘
3)

𝑛𝑡

𝑘=1

 (16) 

3. Finite element solution 

To obtain the numerical solution for the current problem, we employ a higher-order beam 

element as depicted in Figure 2. This one-dimensional element features three nodes located at 𝑥 =
0, 𝐿𝑒/2, and 𝐿𝑒, and it comprises 21 Degrees Of Freedom (DOFs), specifically, 7 DOFs per node. 

These include axial displacement 𝑢0, lateral and vertical deflections 𝑣0, 𝑤0, their spatial 

derivatives 𝑣0,𝑥, 𝑤0,𝑥, and two independent rotations, 𝜓 and 𝜃. The displacement fields for this 

higher-order beam element can be expressed as follows: 

𝑢0 = [𝑁𝑢]{𝛿}

= [𝑁1(𝜉) 0 0 0 0 0 0 𝑁2(𝜉) 0 0 0 0 0 0 𝑁3(𝜉) 0 0 0 0 0 0]{𝛿} 
(17-a) 

𝑣0 = [𝑁𝑣]{𝛿}

= [0 𝐻1(𝜉) �̅�1(𝜉) 0 0 0 0 0 𝐻2(𝜉) �̅�2(𝜉) 0 0 0 0 0 𝐻3(𝜉) �̅�3(𝜉) 0 0 0 0]{𝛿} 
(17-b) 

𝑤0 = [𝑁𝑤]{𝛿}

= [0 0 0 𝐻1(𝜉) �̅�1(𝜉) 0 0 0 0 0 𝐻2(𝜉) �̅�2(𝜉) 0 0 0 0 0 𝐻3(𝜉) �̅�3(𝜉) 0 0]{𝛿} (17-c) 

𝜓 = [𝑁𝜓]{𝛿}

= [0 0 0 0 0 𝑁1(𝜉) 0 0 0 0 0 0 𝑁2(𝜉) 0 0 0 0 0 0 𝑁3(𝜉) 0]{𝛿} 
(17-d) 

𝜃 = [𝑁𝜃]{𝛿}

= [0 0 0 0 0 0 𝑁1(𝜉) 0 0 0 0 0 0 𝑁2(𝜉) 0 0 0 0 0 0 𝑁3(𝜉)]{𝛿} 
(17-e) 
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Here, 𝜉 represents the intrinsic coordinate, defined as 𝜉 =
𝑥

𝐿𝑒
. The Lagrange interpolation 

functions 𝑁𝑖(𝑥) and the Hermite interpolation functions 𝐻𝑖(𝑥) and �̅�𝑖(𝑥), where i ranges from 1 

to 3, are provided as follows: 

𝑁1 = 2(𝜉 − 0.5)(𝜉 − 1), 𝑁2 = 4𝜉(1 − 𝜉),   𝑁3 = 2𝜉(𝜉 − 0.5) (18-a) 

𝐻1 = (1 + 6𝜉)(2(𝜉 − 0.5)(𝜉 − 1))
2
, 𝐻1 = 4𝜉𝐿𝑒(𝜉 − 0.5)

2(𝜉 − 1)2 (18-b) 

𝐻2 = (−4𝜉(𝜉 − 1))2, 𝐻2 = 𝐿𝑒(𝜉 − 0.5)(4𝜉(𝜉 − 1))
2 (18-c) 

𝐻3 = (1 − 6(𝜉 − 1))(2𝜉(𝜉 − 0.5))
2
, 𝐻3 = 𝐿𝑒(𝜉 − 1)(2𝜉(𝜉 − 0.5))

2 (18-d) 

 

 

(a) 

 

(b) 

Figure 2. (a) Higher order beam element and (b) its intrinsic coordinates 

The vector representing the degrees of freedom for the beam element is denoted as: 

{𝛿} = {𝑢01, 𝑣01, 𝑣01,𝑥 , 𝑤01, 𝑤01,𝑥 , 𝜓1, 𝜃1, 𝑢02, 𝑣02, 𝑣02,𝑥 , 𝑤02, 𝑤02,𝑥 , 𝜓2, 𝜃2, 𝑢03, 𝑣03, 𝑣03,𝑥 , 𝑤03, 𝑤03,𝑥, 𝜓3, 𝜃3}
𝑇
 (19) 

In the equations above and those following, the superscript T signifies the transpose of a 

vector or matrix. Following a similar procedure as described in Jafari-Talookolaei et al. (2017) 

and substituting equation 17 into equation 13, and then integrating over the element length, the 

potential energy of a typical element can be formulated in terms of the displacement vector as: 

𝑈𝑒 =
1

2
{𝛿}𝑇[𝐾𝑒]{𝛿} (20) 

Here, [𝐾𝑒] represents the element stiffness matrix, which can be defined as: 
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[𝐾𝑒] = ∫ [
𝐴11

𝐿𝑒
2 [𝑁𝑢,𝜉]

𝑇
[𝑁𝑢,𝜉] + 𝐴66

𝑔,𝑦
2

[𝑁𝜃]
𝑇[𝑁𝜃] +

𝐷11

𝐿𝑒
4 [𝑁𝑤,𝜉𝜉]

𝑇
[𝑁𝑤,𝜉𝜉]

1

0

+
𝑏2

12

𝐴11

𝐿𝑒
4 [𝑁𝑣,𝜉𝜉]

𝑇
[𝑁𝑣,𝜉𝜉] +

𝐴11
𝑓2

𝐿𝑒
2 [𝑁𝜓,𝜉]

𝑇
[𝑁𝜓,𝜉] +

𝐴11
𝑔2

𝐿𝑒
2 [𝑁𝜃,𝜉]

𝑇
[𝑁𝜃,𝜉]

+
𝐴16
𝑔,𝑦

𝐿𝑒
([𝑁𝑢,𝜉]

𝑇
[𝑁𝜃] + [𝑁𝜃]

𝑇[𝑁𝑢,𝜉])

−
𝐵11

𝐿𝑒
3 ([𝑁𝑢,𝜉]

𝑇
[𝑁𝑤,𝜉𝜉] + [𝑁𝑤,𝜉𝜉]

𝑇
[𝑁𝑢,𝜉])

+
𝐴11
𝑓

𝐿𝑒
2 ([𝑁𝑢,𝜉]

𝑇
[𝑁𝜓,𝜉] + [𝑁𝜓,𝜉]

𝑇
[𝑁𝑢,𝜉])

+
𝐴11
𝑔

𝐿𝑒
2 ([𝑁𝑢,𝜉]

𝑇
[𝑁𝜃,𝜉] + [𝑁𝜃,𝜉]

𝑇
[𝑁𝑢,𝜉])

−
𝐵16
𝑔,𝑦

𝐿𝑒
2 ([𝑁𝜃]

𝑇[𝑁𝑤,𝜉𝜉] + [𝑁𝑤,𝜉𝜉]
𝑇
[𝑁𝜃])

−
𝐴16
𝑦𝑔,𝑦

𝐿𝑒
2 ([𝑁𝜃]

𝑇[𝑁𝑣,𝜉𝜉] + [𝑁𝑣,𝜉𝜉]
𝑇
[𝑁𝜃])

+
𝐴16
𝑓𝑔,𝑦

𝐿𝑒
([𝑁𝜃]

𝑇[𝑁𝜓,𝜉] + [𝑁𝜓,𝜉]
𝑇
[𝑁𝜃]) +

𝐴16
𝑔𝑔,𝑦

𝐿𝑒
([𝑁𝜃]

𝑇[𝑁𝜃,𝜉] + [𝑁𝜃,𝜉]
𝑇
[𝑁𝜃])

−
𝐵11
𝑓

𝐿𝑒
3 ([𝑁𝜓,𝜉]

𝑇
[𝑁𝑤,𝜉𝜉] + [𝑁𝑤,𝜉𝜉]

𝑇
[𝑁𝜓,𝜉])

−
𝐵11
𝑔

𝐿𝑒
3 ([𝑁𝜃,𝜉]

𝑇
[𝑁𝑤,𝜉𝜉] + [𝑁𝑤,𝜉𝜉]

𝑇
[𝑁𝜃,𝜉])

−
𝐴11
𝑦𝑔

𝐿𝑒
3 ([𝑁𝜃,𝜉]

𝑇
[𝑁𝑣,𝜉𝜉] + [𝑁𝑣,𝜉𝜉]

𝑇
[𝑁𝜃,𝜉])

+
𝐴11
𝑓𝑔

𝐿𝑒
2 ([𝑁𝜃,𝜉]

𝑇
[𝑁𝜓,𝜉] + [𝑁𝜓,𝜉]

𝑇
[𝑁𝜃,𝜉]) + 𝐴55

𝑓,𝑧
2

[𝑁𝜓]
𝑇
[𝑁𝜓]] 𝐿𝑒𝑑𝜉 

(21) 

Conversely, when equation 17 is substituted into equation 15, the kinetic energy of the 

typical element can be expressed in terms of the nodal velocity vector as: 

𝑇𝑒 =
1

2
{�̇�}

𝑇
[𝑀𝑒]{�̇�} (22) 

Here, [𝑀𝑒] denotes the element mass matrix, which can be derived as follows: 
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[𝑀𝑒] = ∫ [𝐼1([𝑁𝑢]
𝑇[𝑁𝑢] + [𝑁𝑣]

𝑇[𝑁𝑣] + [𝑁𝑤]
𝑇[𝑁𝑤]) +

𝐼3

𝐿𝑒
2 [𝑁𝑤,𝜉]

𝑇
[𝑁𝑤,𝜉]

1

0

+
𝐼1

𝐿𝑒
2

𝑏2

12
[𝑁𝑣,𝜉]

𝑇
[𝑁𝑣,𝜉] + 𝐼1

𝑓2
[𝑁𝜓]

𝑇
[𝑁𝜓] + 𝐼1

𝑔2[𝑁𝜃]
𝑇[𝑁𝜃]

−
𝐼2
𝐿𝑒
([𝑁𝑢]

𝑇[𝑁𝑤,𝜉] + [𝑁𝑤,𝜉]
𝑇
[𝑁𝑢]) + 𝐼1

𝑓
([𝑁𝑢]

𝑇[𝑁𝜓] + [𝑁𝜓]
𝑇
[𝑁𝑢])

+ 𝐼1
𝑔([𝑁𝑢]

𝑇[𝑁𝜃] + [𝑁𝜃]
𝑇[𝑁𝑢]) −

𝐼2
𝑓

𝐿𝑒
([𝑁𝜓]

𝑇
[𝑁𝑤,𝜉] + [𝑁𝑤,𝜉]

𝑇
[𝑁𝜓])

−
𝐼2
𝑔

𝐿𝑒
([𝑁𝜃]

𝑇[𝑁𝑤,𝜉] + [𝑁𝑤,𝜉]
𝑇
[𝑁𝜃]) −

𝐼1
𝑦𝑔

𝐿𝑒
([𝑁𝜃]

𝑇[𝑁𝑣,𝜉] + [𝑁𝑣,𝜉]
𝑇
[𝑁𝜃])

+ 𝐼1
𝑓𝑔
([𝑁𝜃]

𝑇[𝑁𝜓] + [𝑁𝜓]
𝑇
[𝑁𝜃])] 𝐿𝑒𝑑𝜉 

(23) 

The element mass and stiffness matrices are combined to form the total matrices [𝑀] and 

[𝐾], respectively. To enforce the elastic boundary conditions, the relevant elastic coefficients are 

inserted into the corresponding main diagonal components of the total stiffness matrices (Jafari-

Talookolaei et al., 2017). 

Subsequently, the discrete form of the governing equations of motion for the entire system 

during free vibrations is derived as: 

[𝑀]{Δ̈} + [𝐾]{Δ} = {0} (24) 

Here, {Δ} encompasses the nodal degrees of freedom of the entire model. Assuming a 

general solution of {Δ} = {Δ0}𝑒
𝑖𝜔𝑡 for equation 24, and defining 𝜆 = 𝜔2, we arrive at: 

([𝐾] − 𝜆[𝑀]){Δ0} = {0} (25) 

Here, 𝜔 represents the natural frequency, and {Δ0} corresponds to the mode shapes of the 

system. Solving equation 25 with nontrivial solutions involves solving the equation det([𝐾] −
𝜆[𝑀]) = 0, which provides the natural frequencies (eigenvalues or resonance frequencies) and the 

corresponding normal modes (eigenvectors) associated with the free vibration of the laminated 

composite beam. 

4. Result and discussion 

We compare the natural frequencies derived from our current model for laminated 

composite beams with those obtained from the commercial software ANSYS to showcase the 

precision of our formulations. 

Unless otherwise specified, and throughout all subsequent sections, we assume a beam 

width of unity (i.e., 𝑏 = 1), and all layers in the laminated beam have equal thickness. The 

numerical results are provided for AS4/3501 Graphite-Epoxy LCB, characterized by the following 

mechanical properties (Krishnaswamy et al., 1992): 

𝐸11 = 144.8 𝐺𝑃𝑎,        𝐸22 = 9.65 𝐺𝑃𝑎,             𝐺12 = 𝐺13 = 4.14 𝐺𝑃𝑎 

𝐺23 = 3.45 𝐺𝑃𝑎,          𝜈12 = 0.33,                       𝜌 = 1389.23 𝑘𝑔/𝑚3 
(26) 

The calculated natural frequencies in these examples are presented in a dimensionless form 

as Ω = 𝜔𝐿2√𝜌/(𝐸11ℎ2). 

4.1. Convergence study 
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In order to examine the convergence of results obtained using the present finite element 

method, a laminated composite beam with layups [30/60/30/60] and clamped-free boundary 

conditions has been considered. The convergence test for the first six dimensionless frequencies 

of the beam is depicted in Figure 3. As observed, a very high convergence rate is evident in the 

finite element results. 

 

 
Figure 3. Convergence test for the laminated composite beam with clamped-free boundary 

conditions (𝐿/ℎ=15, [30/60/30/60], Type 5) 

4.2. Laminated composite beam with different layups 

To validate the accuracy of the model presented in this article, numerical results for beams 

with various layer orientations in this section have been compared with the results of the 3D model 

in the finite element software ANSYS. First three dimensionless natural frequencies for in-plane 

and out-of-plane bending vibrations of the beams with the cross-ply layups [0/90/0/90], 

[0/90/90/0] and angle-ply layups [𝜃/−𝜃/𝜃/−𝜃] are listed in Tables 1 to 3, respectively. 

By comparing the current results with those obtained from the ANSYS software, it can be 

observed that the accuracy of the present mathematical model and formulations are highly suitable. 

This can serve as a solid foundation for future investigations in research. 

In Figure 4, as an illustrative example, the first six mode shapes of the laminated composite 

beam with [0/90/0/90] layups and type 5 are depicted. 

Table 1 

The first three natural frequencies for the in-plane and out-of-plane bending vibrations of the 

laminated beam with clamped-clamped boundary conditions (𝐿/ℎ=15, [0/90/0/90]) 

 In-plane Bending Out-of-plane Bending 

Mode No. 𝜴𝟏 𝜴𝟐 𝜴𝟑 𝜴𝟏 𝜴𝟐 𝜴𝟑 

ANSYS 3.6013 8.4503 14.2861 3.9192 9.2461 15.7126 

Type 1 3.6988 8.8219 15.0952 3.9858 9.5013 16.2627 

Type 2 3.6988 8.8219 15.0952 3.9858 9.5013 16.2627 

Type 3 3.6989 8.8263 15.1114 3.9890 9.5184 16.3078 

Type 4 3.6988 8.8218 15.0943 3.9856 9.5001 16.2593 

Type 5 3.7003 8.8357 15.1388 3.9941 9.5427 16.3690 
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Ω1 = 3.7003 

 
Ω2 = 3.9941 

 
Ω3 = 8.8357 

 
Ω4 = 9.5427 

 
Ω5 = 15.1388 

 
Ω6 = 16.3690 

Figure 4. First six mode shapes of laminated composite beam (𝐿/ℎ=15, [0/90/0/90], Type 5) 

(Solid: 𝑣0, Dashed-dot: 𝑤0) 

Table 2 

The first three natural frequencies for the in-plane and out-of-plane bending vibrations of the 

laminated beam with clamped-clamped boundary conditions (𝐿/ℎ=15, [0/90/90/0]) 

 In-plane Bending Out-of-plane Bending 

Mode No. 𝜴𝟏 𝜴𝟐 𝜴𝟑 𝜴𝟏 𝜴𝟐 𝜴𝟑 

ANSYS 4.5892 10.3167 17.0576 3.9000 9.1709 15.5481 

Type 1 4.6262 10.4689 17.3870 3.9858 9.5013 16.2627 
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 In-plane Bending Out-of-plane Bending 

Mode No. 𝜴𝟏 𝜴𝟐 𝜴𝟑 𝜴𝟏 𝜴𝟐 𝜴𝟑 

Type 2 4.6262 10.4689 17.3870 3.9858 9.5013 16.2627 

Type 3 4.6339 10.5004 17.4575 3.9890 9.5184 16.3078 

Type 4 4.6257 10.4666 17.3817 3.9856 9.5001 16.2593 

Type 5 4.6451 10.5434 17.5509 3.9941 9.5427 16.3690 

 

Table 3 

The first three natural frequencies for the in-plane and out-of-plane bending vibrations of the 

laminated beam with clamped-clamped boundary conditions (𝐿/ℎ=15, [𝜃/−𝜃/𝜃/−𝜃]) 

 In-plane Bending Out-of-plane Bending 

Mode No. 𝜴𝟏 𝜴𝟐 𝜴𝟑 𝜴𝟏 𝜴𝟐 𝜴𝟑 

𝜃 = 0 

ANSYS 4.8639 10.9133 18.0264 4.8745 10.9529 18.1150 

Type 1 4.8980 11.0761 18.4029 4.8981 11.0766 18.4018 

Type 2 4.8980 11.0761 18.4018 4.8981 11.0766 18.4029 

Type 3 4.9059 11.1125 18.4888 4.9060 11.1129 18.4898 

Type 4 4.8974 11.0733 18.3950 4.8975 11.0738 18.3961 

Type 5 4.9173 11.1605 18.6011 4.9174 11.1609 18.6002 

𝜃 = 15 

ANSYS 4.0427 9.4002 15.8745 4.4666 11.4592 20.4220 

Type 1 4.4182 10.2247 17.2438 5.2424 13.0458 22.6600 

Type 2 4.4182 10.2247 17.2438 5.2424 13.0458 22.6600 

Type 3 4.4266 10.2521 17.3040 5.2446 13.0598 22.7073 

Type 4 4.4176 10.2227 17.2394 5.2423 13.0449 22.6567 

Type 5 4.4380 10.2896 17.3848 5.2483 13.0809 22.7750 

𝜃 = 30 

ANSYS 2.7923 6.9390 12.2369 2.8753 7.8071 14.9745 

Type 1 3.1052 7.7232 13.6323 3.5088 9.3159 17.3891 

Type 2 3.1052 7.7232 13.6323 3.5088 9.3159 17.3891 

Type 3 3.1098 7.7358 13.6582 3.5091 9.3180 17.3977 

Type 4 3.1048 7.7222 13.6305 3.5088 9.3158 17.3886 

Type 5 3.1156 7.7533 13.6952 3.5097 9.3217 17.4118 

𝜃 = 45 
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 In-plane Bending Out-of-plane Bending 

Mode No. 𝜴𝟏 𝜴𝟐 𝜴𝟑 𝜴𝟏 𝜴𝟐 𝜴𝟑 

ANSYS 1.9338 5.0480 9.2975 1.9539 5.3294 10.2971 

Type 1 1.9577 5.1399 9.5173 2.0463 5.5183 10.5151 

Type 2 1.9577 5.1399 9.5173 2.0463 5.5183 10.5151 

Type 3 1.9589 5.1435 9.5254 2.0464 5.5188 10.5167 

Type 4 1.9577 5.1396 9.5167 2.0463 5.5183 10.5151 

Type 5 1.9604 5.1486 9.5373 2.0465 5.5197 10.5198 

𝜃 = 60 

ANSYS 1.6440 4.3590 8.1532 1.6710 4.5408 8.7325 

Type 1 1.6296 4.3285 8.1123 1.6534 4.4539 8.4784 

Type 2 1.6296 4.3285 8.1123 1.6534 4.4539 8.4784 

Type 3 1.6298 4.3294 8.1152 1.6534 4.4543 8.4797 

Type 4 1.6296 4.3284 8.1121 1.6534 4.4539 8.4783 

Type 5 1.6301 4.3312 8.1204 1.6536 4.4551 8.4823 

𝜃 = 75 

ANSYS 1.6078 4.2680 7.9922 1.6284 4.3859 8.3469 

Type 1 1.6063 4.2662 7.9951 1.6184 4.3318 8.1868 

Type 2 1.6063 4.2662 7.9951 1.6184 4.3318 8.1868 

Type 3 1.6064 4.2671 7.9979 1.6185 4.3324 8.1887 

Type 4 1.6063 4.2662 7.9950 1.6184 4.3318 8.1867 

Type 5 1.6067 4.2687 8.0028 1.6187 4.3335 8.1924 

𝜃 = 90 

ANSYS 1.6154 4.2859 8.0205 1.6236 4.3305 8.1525 

Type 1 1.6161 4.2893 8.0323 1.6237 4.3306 8.1524 

Type 2 1.6161 4.2893 8.0323 1.6237 4.3306 8.1524 

Type 3 1.6162 4.2901 8.0351 1.6238 4.3313 8.1547 

Type 4 1.6161 4.2892 8.0321 1.6237 4.3306 8.1523 

Type 5 1.6165 4.2918 8.0402 1.6241 4.3327 8.1590 

 

4.3. Influence of width to thickness ratio and boundary conditions 

In this section, the effect of the beam’s width-to-thickness ratio (𝑏/ℎ) on the dimensionless 

frequencies of in-plane and out-of-plane bending vibrations of the laminated composite beam with 

different boundary conditions has been investigated. The beam is composed of layers with 
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[30/60/30/60] stacking sequence, and the length-to-thickness ratio is set to 𝐿/ℎ = 15. Without the 

lack of generality, the displacement field of type 3 has been considered. It should be mentioned 

that to extract the results for different values of 𝑏/ℎ, the thickness (h) has been kept constant while 

the width (b) is varied. 

As observed, an increase in the 𝑏/ℎ ratio does not significantly alter the in-plane bending 

frequency for all boundary conditions. However, there is a noticeable increase in the out-of-plane 

bending frequency. Furthermore, the results indicate that initially, the in-plane frequency is higher 

than the out-of-plane frequency. However, within the 𝑏/ℎ range of 0.9 to 1 and depending on the 

type of boundary conditions, this order is reversed, and the out-of-plane frequency surpasses the 

in-plane frequency. 

 
Figure 5. The influence of beam’s width to thickness ratio (b/h) on the dimensionless 

fundamental frequencies of the laminated beam (L/h=15, [30/60/30/60], Type 3) 

4.4. Effects of slenderness ratio and material anisotropy 

In this section, the effects of the slenderness ratio (L/h) and the anisotropy ratio (𝐸11/𝐸22) 

on the in-plane and out-of-plane bending frequencies have been investigated, and the 

corresponding results are shown in Figures 6 and 7, respectively. In both cases, a beam with 

clamped-clamped boundary conditions, displacement field type 5, and the stacking sequence 

[30/60/30/60] has been considered. 

It is worth noting that, in obtaining the results in Figure 6, the thickness (h) was kept 

constant while the length (L) was varied. As observed, with an increase in the slenderness ratio, 

the dimensionless frequencies increase and then tend towards a constant value, which corresponds 

to the frequency obtained based on the classical theory. 
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Figure 6. The influence of slenderness ratio (L/h) on the dimensionless fundamental 

frequencies of the laminated beam (Clamped-clamped boundary conditions, [30/60/30/60], 

Type 5) 

It should be noted that, in extracting the dimensionless frequencies in Figure 7, the value 

of 𝐸22 was held constant and calculated based on the equation 26, while the value of 𝐸11 was 

varied. Additionally, in obtaining the dimensionless frequencies (Ω) in this figure, 𝐸11 has been 

replaced using the equation 26. It has been observed that an increase in the anisotropy ratio leads 

to higher in-plane and out-of-plane bending frequencies. The rate of this increase is initially steep 

but gradually diminishes. Additionally, as the aspect ratio increases, the difference between these 

frequencies also becomes more pronounced. 
 
 

 
Figure 7. Influence of material anisotropy (𝐸11/𝐸22) on the dimensionless fundamental 

frequencies of the laminated beam (L/h=15, clamped-clamped boundary conditions, 

[30/60/30/60], Type 5) 
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5. Conclusions 

This paper presents the in-plane and out-of-plane free vibration analysis of laminated 

composite beams using novel higher-order displacement fields, accounting for Poisson’s ratio, 

shear deformation, and rotary inertia. A new finite element was introduced to determine the 

vibration characteristics, and the results were compared with those from 3D ANSYS software. 

The main findings are as follows: 

- The results show close agreement with those obtained from ANSYS, validating the 

proposed method. 

- For a b/h ratio ranging from 0.9 to 1, the in-plane bending frequency initially exceeds the 

out-of-plane frequency. However, as the ratio approaches 1, the out-of-plane frequency surpasses 

the in-plane frequency, depending on the boundary conditions. 

- An increase in the slenderness ratio leads to an increase in dimensionless frequencies, 

which then level off to a constant value. 

- With a higher anisotropy ratio, both in-plane and out-of-plane bending frequencies 

increase rapidly at first, then at a slower rate. The difference between these frequencies also grows 

with an increasing aspect ratio. 
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