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Structural damage, whether visible or hidden, is an inevitable 

occurrence in all structures, machines, and tools, arising from factors 

such as machining processes, wear, and impact. Over the years, 

significant efforts in structural dynamics have been devoted to 

evaluating and reconciling numerical models with experimental data 

to accurately detect and quantify such damage. This study presents a 

comprehensive approach to identifying and quantifying structural 

damage in multilayer composite beams by first assessing the global 

modal and frequency differences between undamaged and damaged 

structures using the Frequency Response Function (FRF) method. 

These results are then utilized in various metaheuristic optimization 

algorithms to precisely detect and quantify the extent of the damage. 

The focus of this work is to evaluate the effectiveness of three 

optimization algorithms: the African Vulture Optimization 

Algorithm (AVOA), the Salp Swarm Algorithm (SSA), and the 

Whale Optimization Algorithm (WOA). These algorithms are tested 

on a composite structure to determine their accuracy and 

computational efficiency in identifying structural damage. 

1. Introduction  

Early methods for detecting structural damage were basic and often inaccurate, mainly 

relying on visual inspections or acoustic signals to spot potential issues. Over time, more advanced 

non-destructive testing methods have been developed, incorporating various aspects of materials 

and structures to improve precision (Kahouadji et al., 2022). 

 As various industries have grown, the condition of structures has become a key focus for 

researchers and professionals. The advancement of this field has been greatly boosted by the rise 

of computers and improved data processing methods. Ongoing technological development has led 

to the creation, testing, and improvement of various methods for detecting and measuring damage 

in structures. 

 These approaches, which extend over the last two centuries, can be classified into three 

groups: techniques based on experimental data, techniques based on modal data and finite element 

data, and hybrid techniques that combine elements of both approaches (Hwang & Kim, 2004). 

This classification reflects the dynamic nature of structural damage detection, showing 

interdisciplinary efforts to improve the reliability and accuracy of assessment methods. 

Cawley and Adams (1979) suggested that if a set of natural frequencies is measured before 

a structure becomes operational, these frequency measurements can be used to identify damage by 

comparing them with the original natural frequencies. However, the statistical methods proposed 

by Friswell et al. (1994) for damage detection, though pioneering, were found to be somewhat 

impractical due to limitations in the chosen modeling approaches and the neglect of several 
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influential parameters, some of which have since been addressed. 

The advent of optimization methods and algorithms has significantly advanced the field. 

Many of these algorithms are inspired by the collective behavior of organisms or evolutionary 

processes in nature. Metaheuristic optimization algorithms, in particular, have become essential 

for solving complex optimization problems. They offer versatility, adapting to a wide range of 

challenges, especially when conventional optimization techniques fall short due to problem 

complexity, non-linearity, or expansive search spaces (Wong & Ming, 2019). These algorithms 

systematically explore the solution space through iterative processes, progressively refining the 

initial solution or a population of solutions across multiple iterations (Agrawal et al., 2021). 

 This characteristic makes them applicable to problems presenting objective functions that 

are non-differentiable, discontinuous or noisy. They can be divided into four main categories that 

can hybridize with each other, and which are algorithms: evolutionary, individual or swarm animal 

intelligence, the laws of physics and human behavior.  

Tiachacht et al. (2018) introduced a combination of Modified Cornwell Indicator (MCI) 

and Genetic Algorithm. The objective function, based on the modal parameters of damaged 

structures, was designed to quantify accurately the damage. The numerical results indicated the 

strength of the suggested approach. 

 The second group of metaheuristic methods includes the methods of individual animal 

intelligence or swarm based on the social behavior of animals. The most popular are the Ant 

Colony Optimization algorithm (ACO), the Artificial Bee Algorithm (ABC), the Gray Wolf 

Optimization algorithm (GWO) and the Dung Beetle Optimizer (DBO) The optimization of ant 

colonies (ACO) for example derives its fundamental principles from the complex foraging 

behaviors presented by real ants (Dorigo & Stützle, 2003). This algorithm uses artificial ants as 

agents that cross a given solution space in search of optimal solutions (Dorigo et al., 2006). The 

navigation strategy closely mimics the foraging patterns observed in nature, where real ants 

communicate through chemical signals called pheromones to guide each other artificial ants leave 

virtual traces of to guide the decisions of subsequent ant agents. allowing the discovery of optimal 

or high-quality solutions in complex optimization scenarios (Dorigo & Stützle, 2019).  

Benaissa et al. (2024) present an insightful comparison of the strengths and limitations of 

metaheuristic algorithms versus gradient-based optimization methods. Their paper offers a 

comprehensive overview of the applicability of these techniques across various problem domains 

and under different resource constraints. 

Physics-based algorithms are inspired by the laws of physics and nature, we can mention 

the most popular of them Harmony Search (HS) the Gravitational Search Algorithm (GSA), the 

Atom Search Optimization algorithm (ASO), the Big Bang-Big Crunch algorithm (BBBC), the 

Small World Optimization Algorithm (SWOA), the Black Hole algorithm (BH). Harmony Search 

(HS), for its part, is inspired by the collaborative and iterative nature of musical composition 

(Yang, 2009). In HS, a population of candidate solutions is analogous to the musical elements, and 

they undergo iterative adjustments, reflecting the process of fine-tuning the musical composition 

(Geem et al., 2001). This iterative approach allows HS to constantly explore the solution space, in 

order to optimize the solutions encountered. The main objective of the algorithm is to identify and 

converge on improved solutions, following the example of musicians who create harmonious 

compositions through creative improvisations. The effectiveness of HS in the optimization of 

complex problems lies in its ability to capture the essence of the harmonization and refinement of 

the musical world, resulting in solutions that demonstrate precision and art, similar to a well-

composed musical piece (Geem, 2010). 

 For the fourth category which are the algorithms based on human behaviors, they are 

characterized by two processes: exploration and exploitation, these methods include Tabu Search 



   Mohand Amokrane Lounis et al. HCMCOUJS-Advances in Computational Structures, 15(1), …-… 5 

(TS) Teaching-Learning-Based Optimization (TLBO), Group Search Optimizer (GSO), Fireworks 

Algorithm (FA), researcher optimization algorithm (SOA), Mountaineering Team-Based 

Optimization (MTBO). Tabu Search (TS) is based on its short-term memory, which fulfills a 

double objective in the algorithm (Gendreau & Potvin, 2005). This distinctive feature of Tabu 

Search (TS) enhances the algorithm in several ways. It increases computational efficiency by 

preventing the re-examination of already evaluated solutions and enhances the overall robustness 

and versatility of TS. By avoiding redundant visits and promoting diversification, TS explores the 

solution space more thoroughly, thereby increasing the likelihood of discovering superior solutions 

(Hertz et al., 1995). 

We can also mention recently published algorithms such as 

• The algorithm of the solar system (Zitouni et al., 2020),  

• The YUKI algorithm which introduces a dynamic methodology for reducing the search 

space (Benaissa et al., 2021), 

• Hunter-Prey optimization (Naruei et al., 2022), 

• The Algorithm for optimizing planets (Wahab et al., 2022), 

• The Sinh cosh optimizer (Bai et al., 2023),  

• The Coati Optimization Algorithm (Dehghani et al., 2023). 

This research presents an efficient approach for detecting, locating, and quantifying 

damage in laminated beam structures. The technique integrates the Frequency Response Function 

(FRF) indicator with advanced optimization algorithms, including the African Vulture 

Optimization Algorithm (AVOA), Salp Swarm Algorithm (SSA), and Whale Optimization 

Algorithm (WOA). The proposed method demonstrates high accuracy and effectiveness in 

identifying both single and multiple damages. Additionally, it enables real-time monitoring of the 

structural health of laminated beam structures, which is critical for ensuring their safety and 

reliability. 

2. Problem formulation 

Damage localization and quantification in multilayer composite beams can be achieved 

using the Frequency Response Function (FRF) indicator combined with optimization techniques. 

2.1. Frequency Response Function (FRF) 

FRF is a damage indicator that is computed from the mass and stiffness matrices of a 

structure and is based on the vibrational response of the structure. 

The FRF for the damaged and healthy structures is presented in the following formulation. 

                                         (1) 

Where  and are mass and stiffness matrices, the symbol , are undamaged 

and damaged, the stiffness changes as follows: 

                                                      (2) 

Where ,   denotes the stiffness healthy and damaged structure, respectively. 

2.2. African Vultures Optimization Algorithm (AVOA) 

Vultures are a group of predatory birds known for inhabiting harsh, often desert climates. 
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While they generally avoid attacking healthy animals, they may prey on the injured or sick. Their 

diet primarily consists of carcasses and other remains. In Africa, various vulture species exist, each 

with distinct physical features, though they share similar lifestyles. In times of food scarcity, 

vultures engage in fierce battles and confrontations to secure even the smallest scraps for survival. 

Vultures’ intelligence is evident in their movement patterns, strategic approaches, 

dominance tactics, food acquisition strategies, and defensive behaviors. This remarkable 

intelligence is depicted in Figure 1. Inspired by these characteristics, a group of researchers, led 

by Benyamin et al., developed an optimization algorithm. This algorithm is based on fundamental 

vulture behaviors and incorporates four key hypotheses to simulate the optimization process, 

which is then structured into four distinct stages (Gürses et al., 2022). 

Figure 1 

Vulture Manner Approaches 

 

2.3. Salp Swarm Algorithm (SSA) 

Salps are marine organisms with a structure and movement style akin to jellyfish. The 

inspiration for this optimization algorithm comes from observing the navigation and foraging 

behaviors of salps in the marine environment. During their quest for food, salps form chains, 

providing each member with the opportunity for a coordinated change in troop movement, 

progressing toward their objective. The mathematical model for these salp chains involves initially 

dividing the population into two groups: a leader and followers or a leader and a salp forming the 

chain and directing movement, followed by other salps, as illustrated in Figure 2. 

The article titled “Salp Swarm Algorithm,” authored by a group of researchers including 

Mirjalili and Gandomi, and others, highlights the practicality of this approach, demonstrated 

through testing in various fields (Mirjalili et al., 2017). 

Figure 2 

(a) Individual Salp, and (b) Salps Chain 

 

(A) 

 

(B) 
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2.4. Whale Optimization Algorithm (WOA) 

Whales hold the title of being the largest mammals on Earth and are considered formidable 

predators. One fascinating aspect of whales lies in their intelligence. Among the various whale 

species, humpback whales stand out due to their unique hunting method. This distinctive foraging 

behavior is known as the bubble net feeding method. Humpback whales exhibit a preference for 

hunting small fish near the water’s surface. Researchers have identified two maneuvers associated 

with the use of bubbles, naming them “upward spirals” and “double loops.” By circling their prey, 

these whales can pinpoint the location and engulf it efficiently, as illustrated in Figure 3. In their 

article, (Mirjalili & Lewis, 2016) propose a mathematical optimization model, demonstrating that 

the whale’s target and the best solution of the model closely approximate the optimum. 

Figure 3 

Whales Upward Spirals 

 

3. Numerical analysis 

3.1. Composite materials 

Due to their associated advantages of weight reduction and durability and toughness, 

composite materials are used in different fields. They are generally composed of solid and rigid 

fibers in a resistant resin matrix. Usually these are Carbon Fiber Reinforced Plastic (CFRP), Glass 

Fiber Reinforced Plastic (GRFP), honeycomb cores and carbon laminates. Composite defects can 

form during the manufacturing process and include and they can be in Bonding defects, 

Delamination, Misalignment of Fibers Presence of foreign body, Cracking of the folds, in addition 

to manufacturing defects, etc. 

3.2. System’s characteristics 

The study focuses on a multi-layer composite beam recessed on both ends, with four 

different cases of damage tested, as depicted in Figure 4.  

Other characteristics are mentioned in Table 1. 

Figure 4 

Doubly Embedded Composite Beam Discretized on 16 Elements whith the Fourth Damage Cases 

 

Source. The data are from “An efficient approach for optimal sensor placement and damage identification in laminated 

composite structures” by D. C. Dinh, H. T. Dang and T. T. Nguyen, 2018, Advances in Engineering Software, 119, 

pp. 48-59 
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Table 1 

Characteristic of the Structure 

Characteristic  Value  

Length l (m) 0.2 

Width  b (m) 0.02 

Thickness h (m) 0.02 

Number of elements 16 

Number of ply 3 

Source. The data are from “An efficient approach for optimal sensor placement and damage identification in laminated 

composite structures” by D. C. Dinh, H. T. Dang and T. T. Nguyen, 2018, Advances in Engineering Software, 119, 

pp. 48-59 

3.3. Model validation 

With the implementation of the physical model, the use of the modal frequency analysis 

method gives the different eigenmodes of the structure. the five initial modes are compared with 

other previous work mentioned in Table 2. 

Table 2 

The Natural Frequencies of the Composite Beam 

 Modal frequency (Hz) 

Frequency mode 1st 2nd 3rd 4th 5th 

Present structure 19.125 38.983 61.861 85.374 109.741 

IIRS method (k = 2), using 6 

optimal (Dinh et al., 2018) 
19.125 38.985 62.472 86.191 127.987 

Frequencies calculated by various 

models (Dinh et al., 2018) 
19.125 38.983 61.861 85 .374 109.741 

Source. The data are from “An efficient approach for optimal sensor placement and damage identification in laminated 

composite structures” by D. C. Dinh, H. T. Dang and T. T. Nguyen, 2018, Advances in Engineering Software, 119, 

pp. 48-59  

The comparisons highlight the accuracy of the results and validate the chosen model. 

Various damage scenarios are considered (see Table 3), and a damage indicator is obtained for 

each scenario. These damage indicators serve as initial data for the subsequent optimization and 

quantification processes. 

Table 3 

Damage Scenarios 

Cases Elements Damaged Damage% Iteration Population 

Case 1 7 20 1500 100 

Case 2 14 35 1500 100 

Case 3 2 15 2000 200 

12 30 2000 200 

Case 4 8 10 2000 200 
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Cases Elements Damaged Damage% Iteration Population 

15 25 2000 200 

Source. The researcher’s data analysis 

4. Optimization results 

The damage indicators for each case are used as initial data for optimizing and quantifying 

the assumed damage using the three methods. After executing the optimization, the results of the 

iterations are displayed in Figure 5, which shows the damage index for the three methods compared 

to the reference bar. These figures demonstrate that all three methods effectively detect and 

quantify both single and multiple damage scenarios.  

Figure 5 

Damage Index in different Damage Cases 

 

 
(a) Case 1 (c) Case 3 

 

 
(b) Case 2 (d) Case 4 

Figure 6 shows us the execution time of the three programs of 1,500 iterations and single 

damage for cases 1 and 2 and 2,000 iterations and two damage for cases 3 and 4. 

The figures give us an almost identical time for the AVOA and WOA programs, a shift of 

around 1% to 3%. 

Figure 6 

Execution CPU Time’s 

 

Figure 5-a                                                                                                Figure 5-b 

 

Figure 5-c                                                                                         Figures 5-d 

 

Figure 5: damage index in different damage cases 

 

Figure 5-a                                                                                                Figure 5-b 

 

Figure 5-c                                                                                         Figures 5-d 

 

Figure 5: damage index in different damage cases 
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Figure 5-c                                                                                         Figures 5-d 

 

Figure 5: damage index in different damage cases 
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Figure 5-c                                                                                         Figures 5-d 

 

Figure 5: damage index in different damage cases 
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As for the SSA algorithm, it is longer by around 5 to 11 compared to the other two. 

Figures 7(a) illustrate the algorithms’ approach to the exact solution. 

In the case of a single damage, depicted in Figures 7-a Case 1 and 7-a Case 2, all three 

methods exhibit faster convergence. 

However, for scenarios involving two damages, as shown in Figures7-a Case 3 and 7-a 

Case 4, the approximation process takes a longer duration. 

Figure 7 

(a) Convergence Damage Level using different Optimization Techniques 

(b) Number of Iterations necessary to obtain the Result 

 

 

Element 7 

(a) Case 1 (b) Case 1 

 

 

Element 14 

(a) Case 2 (b) Case 2 

 

 

Element 2 

 

Element 12 

(a) Case 3 (b) Case 3 
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Element 8 

 

Element 15 

(a) Case 4 (b) Case 4 

 

Figure 7 provides insights into the number of iterations required to achieve the desired 

values. Specifically, Figure 7-a illustrates Case 1 and Case 2 for one iteration, while Figure 7-b 

depicts Case 3 and Case 4 for two iterations. It is evident that the AVOA requires fewer iterations 

compared to the other methods. 

SSA needs more iterations, with increases ranging from 37 to 64 for single damage 

scenarios and from 47 to 174 for multiple damage scenarios. Conversely, WOA converges more 

slowly, requiring between 63 and 103 more iterations for single damage and between 97 and 200 

more iterations for multiple damages. 

5. Conclusions 

This study examined a multilayer composite beam using the Frequency Response Function 

(FRF) method to identify various modal and frequency characteristics of the structure. The results 

were applied to damage optimization. The effectiveness of three optimization algorithms - the 

African Vulture Optimization Algorithm (AVOA), Salp Swarm Algorithm (SSA), and Whale 

Optimization Algorithm (WOA) - was evaluated in terms of detecting and quantifying damage. 

The findings revealed that AVOA achieved results with a slight delay ranging from 5 to 11 

compared to the other methods. Significantly, AVOA demonstrated superior performance by 

requiring 37 to 200 fewer iterations than SSA and WOA to reach the desired outcomes. Therefore, 

AVOA is identified as the most effective algorithm for optimizing damaged structures. 
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