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This study presents a novel analytical investigation into the 
buckling behavior of porous Functionally Graded (FG) beams, 
incorporating the effects of thickness stretching and porosity 
variations. Unlike conventional approaches that assume porosity is 
purely governed by the rule of mixtures, this work introduces a novel 
perspective by directly relating porosity to the material volume 
fraction. Two distinct porosity schemes are analyzed: Volume 
Fraction-Dependent porosity (VFD) and Rule of Mixtures-
Dependent porosity (RMD), with four porosity distribution types -
Even, Uneven, Linear (1), and Linear (2). A higher-order shear 
deformation theory is developed to account for the thickness 
stretching effect, enabling precise modeling of transverse shear 
stresses without the need for correction factors. The equilibrium 
equations are derived using the principle of virtual work and solved 
via the Galerkin method for a range of boundary conditions. 
Comprehensive parametric studies reveal the influence of structural 
geometry, material grading, and porosity types on the critical 
buckling loads. The findings demonstrate the robustness of the 
proposed framework and offer new insights for designing 
lightweight and efficient FG structures.  

1. Introduction 

Functionally Graded Structures (FGS) are advanced materials characterized by a 
continuous variation in composition and properties, allowing for tailored mechanical performance 
in various applications. The incorporation of porosity in FGS offers significant advantages, such 
as reduced weight, improved thermal insulation, and enhanced energy absorption capabilities, 
making them suitable for lightweight applications in aerospace and automotive industries. 
However, the presence of porosity can also lead to disadvantages, including decreased mechanical 
strength and stiffness, which may compromise structural integrity under certain loading 
conditions. Consequently, the design of functionally graded structures with porosity requires 
careful optimization to balance these benefits and drawbacks. Understanding the interplay between 
porosity and material properties is crucial for maximizing performance while ensuring reliability. 

Numerous studies have investigated the effects of porosity on the mechanical behavior of 
Functionally Graded (FG) beams. To investigate the nonlinear static deflections of functionally 
graded materials with porosity under thermal effects, Akbaş (2017) employed a comprehensive 
Lagrangian finite element method within a two-dimensional continuum framework, utilizing the 
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Newton - Raphson approach. Atmane et al. (2017) accounted for the effects of thickness stretching 
and porosity in their vibrational analysis of functionally graded beams. Su et al. (2019) examined 
the impact of surface effects on the static bending behavior of porous functionally graded 
nanobeams subjected to a concentrated transverse load, applying Reddy’s higher-order beam 
theory. Following Timoshenko beam theory, Mojahedin et al. (2018) conducted a thermoelastic 
analysis of functionally graded porous beams under in-plane thermal loading, which was applied 
uniformly across the entire beam. Burlayenko and Kouhia (2024) explored the free vibration 
characteristics of Functionally Graded Beams (FGBs) with various rectangular cross-sectional 
shapes and four distinct porosity distribution patterns, employing the Differential Transform 
Method (DTM) while validating their results with a beam model solution to the motion equation. 
Eltaher et al. (2018) examined the mechanical bending and vibrational behavior of functionally 
graded porous nanobeams through the application of Euler - Bernoulli theory and Finite Element 
Methods (FEM). Zouatnia et al. (2024) analyzed the natural oscillations of bi-directional 
functionally graded beams using Reddy’s Shear Deformation Theory (RSDT) and Navier’s 
method, focusing on composite materials comprising metal and ceramic components. They 
calculated the elasticity modulus and density to evaluate how grading parameters influence the 
natural frequency by analyzing their effects in both the thickness and longitudinal directions. 
Utilizing Reddy’s third-order shear deformation theory along with the nonlinear von-Kármán 
strain-displacement relationship, Srikarun et al. (2021) examined both linear and nonlinear 
bending behaviors of functionally graded porous beams. Hamed et al. (2019) applied Euler - 
Bernoulli beam theory and finite element methods to model the mechanical bending characteristics 
of functionally graded porous nanobeams. Sah and Ghosh (2022) explored how multi-directional 
porosity distributions affect the free vibration and buckling of porous functionally graded plates, 
proposing an analytical solution based on Navier’s method. Bagheri et al. (2024) investigated the 
influence of pores on the natural frequency and buckling behavior of beams using Classical Beam 
Theory (CBT) and the Differential Quadrature Method (DQM). Additionally, Fahsi et al. (2019) 
employed a novel enhanced quasi-3D shear deformation theory and Navier’s solution to study the 
bending, buckling, and free vibration responses of functionally graded porous beams supported by 
an elastic foundation. A finite element model grounded in first-order shear deformation theory was 
employed by Zghal and Dammak (2021) to analyze the buckling responses of porous structural 
components subjected to various compressive loads. Beitollahi et al. (2024) explored the free 
vibration and static bending behaviors of both porous and non-porous square microplates and 
nanoplates, discovering that a variable length scale parameter increased the stiffness and stability 
of the plates using the Modified Couple Stress Theory (MCST). Utilizing a trigonometric shear 
deformation theory in conjunction with finite element methods, Zhang et al. (2020) examined the 
damping and free vibration properties of porous functionally graded sandwich plates through the 
modified Fourier - Ritz method, integrated with first-order shear deformation theory, analyzing 
the effects of both even and uneven porosities on natural vibration and damping performance. Polit 
et al. (2019) employed Navier’s solutions alongside a higher-order shear deformation theory to 
study the static bending and elastic stability of thick functionally graded graphene platelets 
reinforced porous nanocomposite curved beams. Lastly, Adhikari et al. (2020) proposed a finite 
element model based on higher-order shear deformation theory to conduct buckling analysis of 
porous sandwich functionally graded material plates under various compressive loads. 

Masjedi et al. (2019) employed an orthogonal Chebyshev collocation method to analyze 
the large deflection behavior of functionally graded porous beams subjected to both conservative 
and non-conservative loading conditions. Wang et al. (2020) developed a high-order shear 
deformable beam model to investigate the transient response of Porous Sandwich Beams (PSBs). 
Gao and Xiao (2019) studied the nonlinear bending behavior of functionally graded porous 
nanobeams under various physical stresses using a two-step perturbation technique alongside 
nonlocal strain gradient theory. Wattanasakulpong and Ungbhakorn (2014) examined the 
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nonlinear vibrational responses of functionally graded porous beams with restrained ends. Liu et 
al. (2019) investigated the coupling of thermal and mechanical buckling phenomena in a clamped 
functionally graded sandwich beam by utilizing high-order sinusoidal shear deformation theory. 
Additionally, a quasi-3D shear deformation theory was applied to assess the vibrational 
characteristics of functionally graded porous plates (Mellal et al., 2021) supported by a Winkler-
Pasternak foundation. This approach effectively reduced the number of unknown variables while 
evaluating the impacts of factors such as porosity, volume fraction index, thickness ratio, and wave 
number. Using a modified mixed finite element beam model, Zghal et al. (2020) examined the 
impact of porosity on the static bending behavior of functionally graded beams. Fallah and 
Aghdam (2024) applied physics-based neural networks to investigate the bending and vibrational 
responses of functionally graded porous beams. They utilized Hamilton’s principle to derive the 
equations of motion and trained the network parameters to explore how factors such as porosity, 
material distribution, porosity distribution type, and elastic foundation influence structural 
behavior. Hamed et al. (2020) proposed a parabolic higher-order shear deformation model to 
optimize critical buckling loads for thin and thick functionally graded sandwich beams with porous 
cores. In another study, Zhang et al. (2024) employed Timoshenko beam theory, Modified Couple 
Stress Theory (MCST), and the von Kármán geometric nonlinearity hypothesis to evaluate various 
factors affecting vibrational behavior, including platelet distribution, taper ratio, and boundary 
conditions. Finally, the nonlinear vibration of shear deformable porous sandwich beams was 
presented in reference (Chen et al., 2016), utilizing Timoshenko beam theory. 

This paper explores the buckling behavior of Functionally Graded (FG) plates by relating 
porosity to the volume fraction, diverging from previous research that typically associates porosity 
with the rule of mixtures. The analysis is based on higher-order shear deformation theory, and the 
equilibrium equations are solved using Galerkin’s method. 

2. Material properties 

Consider an FG beam with length and thickness “L×h” (Figure 1). Poisson’s ratio 𝜈 ν is 
assumed to be constant. In this study, two scenarios regarding material constituents dependent on 
porosity are examined: dependence on the volume fraction of porosity (VFD) and dependence on 
the porosity mixing rule (RMD). The effective mechanical properties and volume fraction of 
Functionally Graded Materials (FGM) that account for the influence of porosity can be defined as 
follows: 

2.1. Volume Fraction Porosity Dependent (VFD) 

The volume fraction of the ceramic phase, including the effect of porosity, can be expressed 
as follows: 

𝑉(𝑧) = ቀ
ଵ

ଶ
+

௭

௛
ቁ

௣

− Θ(𝑧) (1)  

Where 𝑝 and 𝛩(𝑧) is the power law index and the porosity distribution function, 
respectively. The Young’s modulus “𝐸” can be expressed as functions of the material composition 
or other relevant parameters.  

𝐸(𝑧) = (𝐸௖ − 𝐸௠)𝑉௖ + 𝐸௠ (2) 

Where the subscripts “𝑚” and “c” denote the metallic and ceramic constituents, 
respectively, and “Vc”  represents the volume fraction of the ceramic phase within the beam. 

2.2. Rule Mixture Porosity Dependent (RMD) 

In the case of porosity dependence based on the mixing rule, the volume fraction of the 
ceramic phase in the x-direction can be calculated as follows: 
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𝑉(𝑧) = ቀ
ଵ

ଶ
+

௭

௛
ቁ

௣
(3)  

Where material properties according to the the rule of mixture is given by: 

𝐸(𝑧) = 𝐸௠ + (𝐸௖ − 𝐸௠)𝑉௖ − Θ(𝑧) (4) 

Four types of porosity distributions have been investigated: even distribution, uneven 
distribution, linear distribution (1), and linear distribution (2). The function that characterizes the 
porosity can be expressed as follows: 

Even porosity: 

Θ(𝑧) =
క

ଶ
(5)  

Uneven porosity: 

Θ(𝑧) =
క

ଶ
ቀ1 −

ଶ|௭|

௛
ቁ (6)  

Linear (1) porosity: 

Θ(𝑧) =
క

ଶ
ቀ

ଵ

ଶ
+

௭

௛
ቁ (7)  

Linear (2) porosity: 

Θ(𝑧) =
క

ଶ
ቀ

ଶ௭ିଵ

ଶ௛
ቁ (8)  

The porosity coefficient is defined by the symbol 𝜉, where 0 ≤ 𝜉 ≤ 0.2. A comparison 
analysis between the effect of the first porosity scheme “VFD” and the other “RMD” on the 
Young’s modulus of the FGM plate is plotted in Figure 2, considering the different types of 
porosity. It is clear that “RMD” has a greater influence on the elastic modulus compared to “VFD”. 

The porosity coefficient is represented by the symbol 𝜉, where 0 ≤ 𝜉 ≤ 0.2. A comparative 
analysis of the effects of the first porosity scheme, “VFD,” and the alternative scheme, “RMD,” 
on the Young’s modulus of the FGM plate is illustrated in Figure 2, taking into account the various 
types of porosity. The results indicate that “RMD” has a more significant impact on the elastic 
modulus than “VFD”. 

Figure 1 

Geometry of The FG Beam 

 
Source. The researcher’s data analysis 

Figure 2 

Influence of The Porosity Scheme on Young’s Modulus (𝑝 = 2, 𝜉 = 0.2) 
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Source. The researcher’s data analysis 

3. Displacement field 

The equilibrium equations governing the bending response of Functionally Graded 
Material (FGM) beams are established using a quasi-3D shear deformation theory. The total 
displacement at any point within the structure can be represented as follows: 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢଴ − 𝑧
డ௪బ

డ௫
+ Φ(𝑧)𝜑௫

𝑤(𝑥, 𝑧, 𝑡) = 𝑤଴ + Φ(𝑧)′𝜑௭

(9)  

The shape function Φ(𝑧), which defines the distribution of transverse shear strains and 
stresses through the thickness of the nanobeam, is expressed as follows:  

Φ(𝑧) = 5ℎ × atan ቀ
௭

௛
ቁ − 4𝑧 (10)  

The shape function Φ(𝑧) is selected to ensure compliance with the stress-free boundary 
conditions at both the top and bottom surfaces of the nanobeam, thereby eliminating the need for 
a shear correction factor. 

The nonzero strains corresponding to the deformations described above are given by: 

൝

𝜎௫௫

𝜎௭௭

𝜏௫௭

ൡ = ൥

𝑄ଵଵ 𝑄ଵଷ 0
𝑄ଵଷ 𝑄ଷଷ 0

0 0 𝑄ହହ

൩ ൝

𝜀௫௫

𝜀௭௭

𝛾௫௭

ൡ (11) 

 

Since the normal strain in the z-direction can be neglected (indicating non-stretching), we 

have 𝜀௭௭
(଴)

= 0. Therefore, it follows that: 

𝑄ଵଵ =
ா

ଵି௩మ

𝑄ଵଷ =
௩ா

ଵି௩

𝑄ହହ =
ா

ଶ(ଵା௩)

(12)  

 

4. Variational statements 

The total potential energy principle is utilized to derive the equilibrium equations for the 
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FG nanobeams: 

∫ ∫ [𝜎௫௫𝛿𝜀௫௫ + 𝜎௭௭𝜀௭௭ + 𝜏௫௭𝛾௫௭]
௅

଴
d𝑥d𝑧

௛ ଶ⁄

ି௛ ଶ⁄
− ∫ 𝑁௫

଴ డ௪బ

డ௫

డఋ௪బ

డ௫
d𝑥

௅

଴

− ∫ 𝑘௪𝑤଴𝛿𝑤଴ + 𝑘௚
డ௪బ

డ௫

డఋ௪బ

డ௫
+ 𝑘௪𝑤଴

ଷ𝛿𝑤଴d𝑥
௅

଴

(13)  

𝑘௪ and 𝑘௚ represent the linear Winkler stiffness and the shear layer stiffness, respectively. 
The equilibrium equations can be expressed as follows: 

డேೣೣ

డ௫
= 0

డమெೣೣ

డ௫మ
− 𝑁௫

଴ డమ௪బ

డ௫మ
− 𝑘௪𝑤଴ + 𝑘௚

డమ௪బ

డ௫మ
− 𝑘ே௅𝑤଴

ଷ = 0

డ௉ೣ ೣ

డ௫
− 𝑄௫௭ = 0

డொೣ೥

డ௫
− 𝑅௭ = 0

(14)  

Where 

𝑁௫௫ = ∫ 𝜎௫௫
௛ ଶ⁄

ି௛ ଶ⁄
d𝑧 = 𝐴ଵଵ

డ௨బ

డ௫
− 𝐵ଵଵ

డమ௪బ

డ௫మ
+ 𝐶ଵଵ

డఝೣ

డ௫
+ 𝐴ଵଷ𝜑௭

𝑀௫௫ = ∫ 𝜎௫௫
௛ ଶ⁄

ି௛ ଶ⁄
𝑧d𝑧 = 𝐵ଵଵ

డ௨బ

డ௫
− 𝐷ଵଵ

డమ௪బ

డ௫మ
+ 𝐹ଵଵ

డఝೣ

డ௫
+ 𝐵ଵଷ

డఝ೥

డ௫

𝑃௫௫ = ∫ 𝜎௫௫
௛ ଶ⁄

ି௛ ଶ⁄
Φ(𝑧)d𝑧 = 𝐶ଵଵ

డ௨బ

డ௫
− 𝐹ଵଵ

డమ௪బ

డ௫మ
+ 𝐻ଵଵ

డఝೣ

డ௫
+ 𝐶ଵଷ𝜑௭

𝑄௫௭ = ∫ 𝜏௫௭
௛ ଶ⁄

ି௛ ଶ⁄
Φ(𝑧)ᇱd𝑧 = 𝐴ହହ ቀ𝜑௫ +

డఝ೥

డ௫
ቁ

𝑅௭ = ∫ 𝜎௭௭Φ(𝑧)ᇱᇱ௛ ଶ⁄

ି௛ ଶ⁄
d𝑧 = 𝐴ଵଷ

డ௨బ

డ௫
− 𝐵ଵଷ

డమ௪బ

డ௫మ
+ 𝐶ଵଷ

డఝೣ

డ௫
+ 𝐷ଵଷ𝜑௭

(15)  

5. Nonlocal strain gradient theory 

By considering the combined physical effects of strain gradient stress and nonlocal elastic 
stress fields, a stress function is proposed as follows: 

𝜎௜௝ = 𝜎௜௝
(଴)

−
ௗఙ೔ೕ

(భ)

ௗ௫
(16)  

Where 𝜎𝜎௜௝
(଴) and 𝜎௜௝

(ଵ) represent the classical stress corresponding to the strain 𝜀௞௟ and the 

higher-order stress 𝜎௜௝
(ଵ) corresponding to the strain gradient 𝜀௞௟,௫, respectively. These can be 

expressed as: 

𝜎௜௝
(଴)

= ∫ 𝐶௜௝௞௟𝛼଴(𝑥, 𝑥ᇱ, 𝑒଴𝑎)𝜀௞௟,௫(𝑥ᇱ)𝑑𝑥ᇱ௅

଴

𝜎௜௝
(ଵ)

= 𝑙ଶ ∫ 𝐶௜௝௞௟𝛼ଵ(𝑥, 𝑥ᇱ, 𝑒ଵ𝑎)𝜀௞௟,௫(𝑥ᇱ)𝑑𝑥ᇱ௅

଴

(17)  

𝐶௜௝௞௟ denotes an elastic constant, and 𝑙 l is the material length scale parameter introduced 
to account for the influence of the strain gradient stress field. The parameters 𝑒𝑒଴𝑎 and 𝑒ଵ𝑎 are 
nonlocal parameters introduced to capture the significance of the nonlocal elastic stress field. 

The nonlocal kernel functions 𝛼଴(𝑥, 𝑥ᇱ, 𝑒଴𝑎) and 𝛼ଵ(𝑥, 𝑥ᇱ, 𝑒ଵ𝑎) satisfy the established 
conditions. Consequently, the general constitutive relation can be expressed as: 
[1 − (𝑒ଵ𝑎)ଶ∇ଶ][1 − (𝑒଴𝑎)ଶ∇ଶ]𝜎௜௝ = 𝐶௜௝௞௟[1 − (𝑒ଵ𝑎)ଶ∇ଶ]𝜀௞௟ − 𝐶௜௝௞௟𝑙

ଶ[1 − (𝑒଴𝑎)ଶ∇ଶ]∇ଶ𝜀௞௟ (18) 

∇ଶ denotes the Laplacian operator. In the current analysis, we assume that the coefficient 
𝑒 = 𝑒଴ = 𝑒ଵ. Therefore, the total nonlocal strain gradient constitutive relation can be expressed as 

[1 − 𝜇∇ଶ]𝜎௜௝ = 𝐶௜௝௞௟[1 − 𝜆∇ଶ]𝜀௞௟ (19) 

Where 𝜇 = (𝑒𝑎)ଶ and 𝜆 = 𝑙ଶ. 

Based on the nonlocal strain gradient theory, the equilibrium equations can be formulated as: 
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ቀ1 − 𝜆
డమ

డ௫మ
ቁ ቀ𝐴ଵଵ

డమ௨బ

డ௫మ
− 𝐵ଵଵ

డయ௪బ

డ௫య
+ 𝐶ଵଵ

డమఝೣ

డ௫మ
+ 𝐴ଵଷ

డఝ೥

డ௫
ቁ = 0

ቀ1 − 𝜆
డమ

డ௫మ
ቁ ቀ𝐵ଵଵ

డయ௨బ

డ௫య
− 𝐷ଵଵ

డర௪బ

డ௫ర
+ 𝐹ଵଵ

డయఝೣ

డ௫య
+ 𝐵ଵଷ

డమఝ೥

డ௫మ
ቁ

− ቀ1 − 𝜇
డమ

డ௫మ
ቁ ቀ𝑁௫

଴ డమ௪బ

డ௫మ
−𝑘௪𝑤଴ − 𝑘௚

డమ௪బ

డ௫మ
− 𝑘௪𝑤଴

ଷቁ = 0

ቀ1 − 𝜆
డమ

డ௫మ
ቁ ቀ𝐶ଵଵ

డమ௨బ

డ௫మ
− 𝐹ଵଵ

డయ௪బ

డ௫య
+ 𝐻ଵଵ

డమఝೣ

డ௫మ
𝐴ହହ𝜑௫ − (𝐴ହହ − 𝐶ଵଷ)

డఝ೥

డ௫
ቁ = 0

ቀ1 − 𝜆
డమ

డ௫మ
ቁ ቀ−𝐴ଵଷ

డ௨బ

డ௫
+ 𝐵ଵଷ

డమ௪బ

డ௫మ
+ (𝐴ହହ − 𝐶ଵଷ)

డఝೣ

డ௫
+ 𝐴ହହ

డమఝ೥

డ௫మ
− 𝐷ଵଷ𝜑௭ቁ = 0

(20)  

The coefficients 𝐴௜௝,𝐵௜௝, 𝐷௜௝, 𝐶௜௝, 𝐹௜௝ and 𝐻௜௝ are defined as 

൛𝐴௜௝ , 𝐵௜௝, 𝐷௜௝ , 𝐶௜௝ , 𝐹௜௝ , 𝐻௜௝ൟ = ∫ 𝑄ଵଵ{1, 𝑧, 𝑧ଶ, Φ(𝑧), 𝑧Φ(𝑧), Φ(𝑧)ଶ}d𝑧
௛ ଶ⁄

ି௛ ଶ⁄
, (𝑖, 𝑗 = 1,2,6)

𝐴ହହ = ∫ 𝑄ହହΦ(𝑧)ᇱଶ
d𝑧

௛ ଶ⁄

ି௛ ଶ⁄

{𝐴ଵଷ, 𝐵ଵଷ, 𝐶ଵଷ} = ∫ 𝑄ଵଷ{Φ(𝑧)ᇱᇱ, 𝑧Φ(𝑧)ᇱᇱ, Φ(𝑧)Φ(𝑧)ᇱᇱ}d𝑧
௛ ଶ⁄

ି௛ ଶ⁄

𝐷ଷଷ = ∫ 𝑄ଷଷΦ(𝑧)ᇱᇱଶ
d𝑧

௛ ଶ⁄

ି௛ ଶ⁄

(21)  

6. Solutions method 

This section presents an analytical approach to the equilibrium equations for the FGM 
nanobeam with simply supported or hinged-hinged (SS) and clamped-clamped (CC) boundary 
conditions, with the displacement field satisfying these conditions expressed as: 

{𝑢଴, 𝜑௫} = ∑ {𝑈௠, 𝜓௫௠}
డ௑೘

డ௫
ஶ
௠ୀଵ

{𝑤଴, 𝜑௭} = ∑ {𝑊௠, 𝜓௭௠}𝑋௠
ஶ
௠ୀଵ

(22)  

Here, 𝑈௠, 𝑊௠, 𝜓௫௠and 𝜓௭௠ are arbitrary parameters. The function 𝑋௠(𝑥) that satisfy the 
different boundary conditions are given as 

 For Simply supported beam (SS) 

𝑋௠ = sin(𝛽𝑥) , 𝛽 =
𝑚𝜋

𝐿
(23) 

 

 For Clamped-Clamped beam (CC) 

𝑋௠ = 1 − cos(𝛽𝑥) , 𝛽 =
2𝑚𝜋

𝐿
(24) 

By substituting Eqs. (22) in Eq. (20); 
 

൦

𝐾ଵଵ 𝐾ଵଶ 𝐾ଵଷ 𝐾ଵସ

𝐾ଶଵ 𝐾ଶଶ 𝐾ଶଷ 𝐾ଶସ

𝐾ଷଵ

𝐾ସଵ

𝐾ଷଶ

𝐾ସଶ

𝐾ଷଷ 𝐾ଷସ

𝐾ସଷ 𝐾ସସ

൪ ൞

𝑈௠

𝑊௠

𝜓௫௠

𝜓௭௠

ൢ = 0 (25) 

Stiffness matrix [K] elements are presented in Appendix A. 

7. Results and discussion 

An FGM beam composed of a mixture of metal and ceramic, specifically an Aluminum 
alloy (Al) and Alumina (Al2O3), is analyzed under various boundary conditions. The material 
properties are as follows: for Aluminum, Young’s modulus 𝐸௠ = 70GPa, and for Alumina 𝐸௖ =
380GPa. The Poisson’s ratio is constant at 𝜐 =  0.3. 
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𝑁ഥ =
𝑁𝑥

0

𝐴110
, 𝐾𝑤 =

𝑘𝑤𝐿2

𝐴110
, 𝐾𝑔 =

𝑘𝑔

𝐴110

(26) 

Where the coefficient 𝐴ଵଵ଴ is of beam made of metal material. 

7.1. Comparative study 

As an initial example, the results for FG beams derived from the present theory are 
compared with those obtained using the higher-order shear deformation theory (2D-HSDT) and 
quasi-3D higher-order beam theory by Vo et al. (2014), Vo et al. (2015). The comparisons are 
summarized in Table 1 for FG beams with different configurations. A strong agreement between 
the present results and previous solutions is evident.  

Table 1 

Comparison of Dimensionless Critical Buckling of FGM Beams 

𝑳/𝒉 𝒑 

Vo et al. (2014) 
(2D) 

Present (2D) 
Error 
(%) 

Vo et al. (2015) 
(3D) 

Present (3D) 
Error 
(%) 

CC 

5 

0 154.55 152.1476 1.55 160.107 161.9546 1.15 

0.5 103.749 102.2679 1.43 107.655 109.1413 1.38 

1 80.6087 79.4836 1.40 83.6958 84.9202 1.46 

2 61.7925 60.8785 1.48 64.1227 64.947 1.29 

5 47.7562 46.8872 1.82 49.3856 49.6039 0.44 

10 41.8042 40.9887 1.95 43.1579 43.3212 0.38 
 SS 

0 48.8401 48.596 0.50 49.5901 49.6677 0.16 

0.5 32.0094 31.8654 0.45 32.5867 32.7142 0.39 

1 24.6911 24.5838 0.43 25.2116 25.3845 0.69 

2 19.1605 19.071 0.47 19.6124 19.7906 0.91 

5 15.74 15.6436 0.61 16.0842 16.1693 0.53 

10 14.1468 14.0513 0.68 14.4116 14.4458 0.24 

10 

 CC 

0 195.361 194.3839 0.50 198.706 207.4437 4.40 

0.5 128.05 127.4616 0.46 130.576 136.3172 4.40 

1 98.749 98.3352 0.42 101.02 105.3848 4.32 

2 76.6677 76.284 0.50 78.5783 81.8435 4.16 

5 62.9786 62.5742 0.64 64.435 66.8867 3.80 

10 56.5971 56.2051 0.69 57.7339 59.9498 3.84 
 SS 

0 52.3082 52.2379 0.13 52.5361 52.6105 0.14 

0.5 34.0087 33.9662 0.12 34.2724 34.3996 0.37 



 11 

𝑳/𝒉 𝒑 

Vo et al. (2014) 
(2D) 

Present (2D) 
Error 
(%) 

Vo et al. (2015) 
(3D) 

Present (3D) 
Error 
(%) 

CC 

1 26.1727 26.1409 0.12 26.4869 26.6722 0.70 

2 20.3936 20.3663 0.13 20.7164 20.9261 1.01 

5 17.1118 17.0818 0.18 17.358 17.4951 0.79 

10 15.5291 15.4994 0.19 15.6895 15.7579 0.44 

20 

 CC 

0 209.233 208.9516 0.13 210.489 222.8882 5.89 

0.5 136.049 135.8649 0.14 137.316 145.2229 5.76 

1 104.716 104.5636 0.15 106.12 112.0462 5.58 

2 81.6035 81.4652 0.17 82.9975 87.4828 5.40 

5 68.4689 68.3271 0.21 69.5392 73.2461 5.33 

10 62.1282 61.9977 0.21 62.8546 66.2914 5.47 
 SS 

0 53.2546 53.2365 0.03 53.3075 53.3878 0.15 

0.5 34.5488 34.536 0.04 34.7084 34.84 0.38 

1 26.5718 26.562 0.04 26.8174 27.0089 0.71 

2 20.7275 20.7186 0.04 21.0066 21.2266 1.05 

5 17.4935 17.4843 0.05 17.7048 17.858 0.87 

10 15.9185 15.91 0.05 16.0416 16.1209 0.49 

𝑁𝑜𝑡𝑒. 𝐸𝑟𝑟𝑜𝑟 (%) = ห൫𝑁ഥ௉௥௘௦௘௡௧ − 𝑁ഥோ௘௙൯ 𝑁ഥோ௘௙ൗ ห × 100%  
Source. Data analysis result of the research 

7.2. Parametric study 

7.2.1. Materials properties effect 

The effect of the power index “𝑝” and the porosity coefficient “𝜉” on the dimensionless 
critical buckling load of simply supported FG beams is shown in Table 2 and Figures 3 and 4 for 
Volume Fraction Distribution (VFD) and the Rule of Mixtures Distribution (RMD). In Figure 3, 
it is evident that the inclusion of porosity reduces the stiffness of the beam. The maximum critical 
buckling load values are achieved in the case of a perfect beam, where pores are absent. Among 
the porous beams, the highest critical buckling loads are associated with linear porosity (Type 1), 
while the lowest is observed for even porosity. 

In Figure 4, the value of 𝑝 = 0 indicates that the beam is composed entirely of ceramic, 
leading to the highest critical buckling load values due to the superior stiffness of the beam in both 
RMD and VFD cases. As the index “𝑝” increases, the buckling load decreases significantly within 
the range 0 ≤ 𝑝 ≤ 4, after which the reduction becomes more gradual. 

Table 2 

Effect of The Power Index “𝑝” and Porosity Coefficient “𝜉” on The Dimensionless Critical 
Buckling Load (𝐿 = 10ℎ, 𝑆𝑆, 𝜇 = 𝜆 = 𝐾௪ = 𝐾௚ = 0) 
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𝝃 𝒑 VFD RMD 
Even Uneven Linear (1) Linear (2) Even Uneven Linear (1) Linear (2) 

0 

0 52.6105 52.6105 52.6105 52.6105 52.6105 52.6105 52.6105 52.6105 
1 26.6722 26.6722 26.6722 26.6722 26.6722 26.6722 26.6722 26.6722 
2 20.9261 20.9261 20.9261 20.9261 20.9261 20.9261 20.9261 20.9261 
5 17.4951 17.4951 17.4951 17.4951 17.4951 17.4951 17.4951 17.4951 
10 15.7579 15.7579 15.7579 15.7579 15.7579 15.7579 15.7579 15.7579 

0.05 

0 51.5375 52.3311 52.0723 52.0723 51.0454 52.2213 51.8252 51.8252 
1 25.4337 26.3161 26.2835 25.8194 24.8290 26.1407 26.1077 25.3883 
2 19.5686 20.5113 20.5520 19.9411 18.8985 20.3046 20.3804 19.4429 
5 16.1269 17.0667 17.1168 16.5033 15.4616 16.8602 16.9486 16.0061 
10 14.4980 15.3770 15.3638 14.8860 13.9009 15.1988 15.1904 14.4560 

0.1 

0 50.4645 52.0515 51.5308 51.5308 49.4813 51.8322 51.0346 51.0346 
1 24.1823 25.9568 25.8940 24.9480 22.9572 25.6030 25.5436 24.0658 
2 18.1811 20.0897 20.1778 18.9243 16.8035 19.6690 19.8361 17.8927 
5 14.7139 16.6272 16.7379 15.4662 13.3219 16.2014 16.4024 14.4165 
10 13.2028 14.9857 14.9676 13.9700 11.9569 14.6165 14.6195 13.0530 

0.15 

0 49.3915 51.7717 50.9859 50.9859 47.9181 51.4432 50.2381 50.2381 
1 22.9163 25.5944 25.5040 24.0570 21.0517 25.0585 24.9798 22.7012 
2 16.7583 19.6608 19.8034 17.8727 14.6240 19.0175 19.2932 16.2674 
5 13.2448 16.1754 16.3583 14.3778 11.0340 15.5147 15.8561 12.7084 
10 11.8610 14.5822 14.5691 13.0034 9.8800 14.0052 14.0440 11.5264 

0.2 

0 48.3186 51.4916 50.4373 50.4373 46.3557 51.0542 49.4353 49.4353 
1 21.6338 25.2286 25.1132 23.1451 19.1058 24.5068 24.4160 21.2906 
2 15.2939 19.2240 19.4288 16.7833 12.3365 18.3485 18.7514 14.5576 
5 11.7039 15.7098 15.9780 13.2313 8.5295 14.7950 15.3093 10.8591 
10 10.4560 14.1646 14.1679 11.9777 7.5849 13.3563 13.4624 9.8461 

Source. Data analysis result of the research 

Figure 3 

Effect of The Porosity Coefficient “𝜁” on The Dimensionless Critical Buckling of Simply 
Supported FG Beam (𝑝 = 2, 𝐿 = 10ℎ, 𝜇 = 𝜆 =  𝐾௪ = 𝐾௚ = 0 ) 

 
Source. The researcher’s data analysis 
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Figure 4 

Effect of The Power Law Index “𝑝” and The Porosity Coefficient “𝜁” on The Dimensionless 
Critical Buckling of Simply Supported FG Beam (𝐿 = 10ℎ, 𝜇 = 𝜆 =  𝐾௪ = 𝐾௚ = 0 ) 

 
Source. The researcher’s data analysis 

7.2.2. Beam geometry effect 

The effect of the geometric parameter 𝐿/ℎ and boundary conditions on the critical buckling 
load of simply supported FG beams with even porosity is presented in Table 3. The power law 
index and the porosity coefficient are set at 𝑝 = 2 and 𝜉 = 0.2. It is observed that increasing the 
thickness ratio leads to an increase in the dimensionless critical buckling load. 

Table 3 

The Effect of The Geometric Parameter “𝐿/ℎ” and Boundary Conditions on The Critical Buckling 
Load (𝑝 = 2, 𝐸𝑣𝑒𝑛, 𝜉 = 0.2, 𝜇 = 𝜆 =  𝐾௪ = 𝐾௚ = 0) 

BCs 𝑳/𝒉 VFD RMD 
Even Uneven Linear (1) Linear (2) Even Uneven Linear (1) Linear (2) 

SS 

5 14.5386 18.1098 18.3438 15.9723 11.7904 17.2831 17.6917 13.9217 
10 15.2939 19.2240 19.4288 16.7833 12.3365 18.3485 18.7514 14.5576 
15 15.4407 19.4431 19.6414 16.9406 12.4420 18.5582 18.9591 14.6803 
20 15.4926 19.5208 19.7167 16.9963 12.4792 18.6326 19.0328 14.7236 
30 15.5298 19.5766 19.7707 17.0362 12.5060 18.6860 19.0856 14.7547 

CC 

5 48.5015 58.7381 59.8892 53.4711 39.8580 55.9777 57.4295 47.2735 
10 59.8554 74.7629 75.8784 65.7669 47.8632 71.0541 72.5384 56.9402 
15 62.5462 78.7140 79.7916 68.6674 49.6958 74.7600 76.2192 59.1619 
20 63.5443 80.1953 81.2557 69.7420 50.3696 76.1482 77.5947 59.9795 
30 64.2764 81.2872 82.3340 70.5298 50.8617 77.1711 78.6071 60.5770 

CF 

5 4.1674 5.2876 5.3758 4.5747 3.2340 4.9897 5.0706 3.8922 
10 4.2471 5.4068 5.4957 4.6607 3.2840 5.0990 5.1791 3.9555 
15 4.2622 5.4295 5.5185 4.6770 3.2935 5.1199 5.1997 3.9675 
20 4.2675 5.4375 5.5266 4.6827 3.2968 5.1272 5.2070 3.9717 
30 4.2713 5.4432 5.5323 4.6869 3.2992 5.1324 5.2122 3.9747 
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Source. Data analysis result of the research 

7.2.3. Small scale effect 

Table 4 and Figure 5 demonstrate the effects of the nonlocal parameter “𝜇” and the length-
scale parameter “𝜆” on the dimensionless critical buckling load of FG beams. It is noted that as 
the nonlocal parameter “𝜇” increases, the dimensionless critical buckling load decreases, 
suggesting that the nonlocal effect induces a stiffness-softening behavior. In contrast, an increase 
in the length-scale parameter “𝜆” results in a rise in the dimensionless critical buckling load. 

Table 4 

Effect of the Nonlocal Parameter “𝜇” and Length Scale Parameter “𝜆” on The Dimensionless 
Critical Buckling Load (𝑝 = 2, 𝜉 = 0.2, 𝐿 = 10ℎ, 𝑆𝑆, 𝐾௪ = 𝐾௚ = 0) 

𝝁 𝝀 VFD RMD 
Even Uneven Linear (1) Linear (2) Even Uneven Linear (1) Linear (2) 

0 

0 15.2939 19.2240 19.4288 16.7833 12.3365 18.3485 18.7514 14.5576 
0.5 16.0408 20.1645 20.3813 17.6032 12.9378 19.2454 19.6710 15.2675 
1 16.7878 21.1050 21.3337 18.4232 13.5391 20.1424 20.5905 15.9773 

1.5 17.5348 22.0456 22.2862 19.2432 14.1404 21.0393 21.5101 16.6871 
2 18.2818 22.9861 23.2386 20.0632 14.7418 21.9362 22.4297 17.3970 

0.5 

0 14.5746 18.3199 18.5151 15.9940 11.7564 17.4856 17.8696 13.8730 
0.5 15.2865 19.2162 19.4228 16.7754 12.3294 18.3404 18.7459 14.5495 
1 15.9984 20.1125 20.3304 17.5568 12.9024 19.1951 19.6222 15.2259 

1.5 16.7102 21.0088 21.2381 18.3382 13.4755 20.0499 20.4985 15.9024 
2 17.4221 21.9052 22.1458 19.1196 14.0485 20.9046 21.3749 16.5788 

1 

0 13.9200 17.4971 17.6835 15.2756 11.2283 16.7003 17.0669 13.2499 
0.5 14.5999 18.3531 18.5504 16.0219 11.7756 17.5166 17.9039 13.8960 
1 15.2798 19.2092 19.4173 16.7682 12.3229 18.3330 18.7409 14.5420 

1.5 15.9597 20.0652 20.2842 17.5146 12.8702 19.1493 19.5779 15.1881 
2 16.6396 20.9213 21.1511 18.2609 13.4175 19.9657 20.4148 15.8342 

1.5 

0 13.3217 16.7450 16.9234 14.6190 10.7457 15.9824 16.3333 12.6804 
0.5 13.9723 17.5642 17.7530 15.3332 11.2694 16.7637 17.1343 13.2987 
1 14.6230 18.3835 18.5827 16.0475 11.7932 17.5449 17.9353 13.9170 

1.5 15.2737 19.2027 19.4123 16.7617 12.3170 18.3262 18.7363 14.5353 
2 15.9243 20.0220 20.2419 17.4759 12.8408 19.1075 19.5373 15.1536 

2 

0 12.7726 16.0549 16.2259 14.0165 10.3028 15.3237 15.6602 12.1578 
0.5 13.3965 16.8404 17.0214 14.7013 10.8050 16.0728 16.4282 12.7506 
1 14.0203 17.6258 17.8168 15.3861 11.3072 16.8219 17.1961 13.3434 

1.5 14.6442 18.4113 18.6122 16.0709 11.8094 17.5709 17.9641 13.9362 
2 15.2680 19.1968 19.4077 16.7557 12.3116 18.3200 18.7321 14.5290 

Source. Data analysis result of the research 

Figure 5 

Effect of The Nonlocal Parameter “𝜇” and The Length Scale Parameter “𝜆” on The 
Dimensionless Critical Buckling of Simply Supported FG Beam (𝑝 = 2, 𝐸𝑣𝑒𝑛, 𝜁 = 0.2, 𝐿 =
10ℎ, 𝐾௪ = 𝐾௚ = 0 ) 
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Source. The researcher’s data analysis 

7.2.4. Winker/Pasternak elastic foundation effect 

Table 5 and Figure 6 illustrates the dimensionless critical buckling load of FG beams 
influenced by Winkler/Pasternak elastic foundations. The inclusion of the foundation enhances the 
rigidity of the beams, with increases in the parameters “𝐾௪” and “𝐾௚”  leading to higher values of 
the dimensionless critical buckling load. 

Table 5 

The Effect of The Elastic Foundation Parameters “𝐾௪” and “𝐾௚” on The Critical Buckling Load 
(𝑝 = 2, 𝜉 = 0.2, 𝑆𝑆, 𝜇 = 𝜆 =  0) 

𝑲𝒘(× 𝟏𝟎ି𝟐) 𝑲𝒈(× 𝟏𝟎ି𝟐) VFD RMD 
Even Uneven Linear 

(1) 
Linear 

(2) 
Even Uneven Linear 

(1) 
Linear 

(2) 

0 

0.0 15.2940 19.2241 19.4290 16.7834 12.3366 18.3487 18.7514 14.5576 
0.2 17.6940 21.6241 21.8290 19.1834 14.7366 20.7487 21.1514 16.9576 
005 21.2940 25.2241 25.4290 22.7834 18.3366 24.3487 24.7514 20.5576 
008 24.8940 28.8241 29.0290 26.3834 21.9366 27.9487 28.3514 24.1576 
1.0 27.2940 31.2241 31.4290 28.7834 24.3366 30.3487 30.7514 26.5576 

2 

0.0 17.7257 21.6558 21.8607 19.2151 14.7683 20.7804 21.1831 16.9893 
0.2 20.1257 24.0558 24.2607 21.6151 17.1683 23.1804 23.5831 19.3893 
0.5 23.7257 27.6558 27.8607 25.2151 20.7683 26.7804 27.1831 22.9893 
0,8 27.3257 31.2558 31.4607 28.8151 24.3683 30.3804 30.7831 26.5893 
1.0 29.7257 33.6558 33.8607 31.2151 26.7683 32.7804 33.1831 28.9893 

5 

0.0 21.3732 25.3034 25.5082 22.8627 18.4158 24.4280 24.8307 20.6369 
0.2 23.7732 27.7034 27.9082 25.2627 20.8158 26.8280 27.2307 23.0369 
0.5 27.3732 31.3034 31.5082 28.8627 24.4158 30.4280 30.8307 26.6369 
0.8 30.9732 34.9034 35.1082 32.4627 28.0158 34.0280 34.4307 30.2369 
1.0 33.3732 37.3034 37.5082 34.8627 30.4158 36.4280 36.8307 32.6369 

8 

0.0 25.0208 28.9510 29.1558 26.5102 22.0634 28.0755 28.4782 24.2845 
0.2 27.4208 31.3510 31.5558 28.9102 24.4634 30.4755 30.8782 26.6845 
0.5 31.0208 34.9510 35.1558 32.5102 28.0634 34.0755 34.4782 30.2845 
0.8 34.6208 38.5510 38.7558 36.1102 31.6634 37.6755 38.0782 33.8845 
1.0 37.0208 40.9510 41.1558 38.5102 34.0634 40.0755 40.4782 36.2845 
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𝑲𝒘(× 𝟏𝟎ି𝟐) 𝑲𝒈(× 𝟏𝟎ି𝟐) VFD RMD 
Even Uneven Linear 

(1) 
Linear 

(2) 
Even Uneven Linear 

(1) 
Linear 

(2) 

10 

0.0 27.4525 31.3827 31.5875 28.9419 24.4951 30.5072 30.9100 26.7162 
0.2 29.8525 33.7827 33.9875 31.3419 26.8951 32.9072 33.3100 29.1162 
0.5 33.4525 37.3827 37.5875 34.9419 30.4951 36.5072 36.9100 32.7162 
0.8 37.0525 40.9827 41.1875 38.5419 34.0951 40.1072 40.5100 36.3162 
1.0 39.4525 43.3827 43.5875 40.9419 36.4951 42.5072 42.9100 38.7162 

Source. Data analysis result of the research 

Figure 6 

Effect of Winkler Foundation Parameter “𝐾௪” and Pasternak Foundation Parameter “𝐾௚” on 
The Dimensionless Critical Buckling of Simply Supported FG Beam (𝑝 = 2, 𝐿 = 10ℎ, 𝜁 =
0.2, 𝜇 = 𝜆 = 0 ) 

 
Source. The researcher’s data analysis 

8. Conclusion 

In conclusion, this study provides a comprehensive analysis of the impact of porosity on 
the buckling behavior of functionally graded beams. By integrating two distinct porosity schemes 
- volume fraction-dependent and rule of mixtures-dependent - we established a novel framework 
that clarifies the relationship between porosity and material volume fraction.  

The analysis demonstrates that increases in the porosity coefficient result in significant 
reductions in critical buckling loads, regardless of the type of porosity distribution. Furthermore, 
we investigated the effects of geometric parameters, nonlocal influences, and foundation stiffness 
on the overall structural rigidity and stability. 

The proposed technique is currently limited to simple beams with uniform thickness, 
straight geometries, and specific boundary conditions, namely simply supported and clamped 
configurations. 

Overall, this work enhances the understanding of how porosity and material distribution 
affect the mechanical performance of functionally graded beams, offering valuable insights for the 
design and optimization of advanced materials in engineering applications. Future research could 
focus on experimental validation of the proposed models and the exploration of various material 
combinations and loading conditions. 
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