Buckling of porous FGM beams considering the thickness stretching effect

Ahmed Amine Daikh'?**, Mohamed Ouedjdi Belarbi®,
Mohamed Sid Ahmed Houari?, Mohamed A. Eltaher*’

'University Center of Naama, Naama, Algeria
Université Mustapha Stambouli, Mascara, Algerie
3Université de Biskra, Biskra, Algeria
“King Abdulaziz University, Jeddah, Saudi Arabia
>Zagazig University, Zagazig, Egypt
*Corresponding author: daikhresearch@gmail.com

ARTICLE INFO ABSTRACT
DOI:10.46223/HCMCOUIS. This study presents a novel analytical investigation into the
acs.en.15.1.69.2025 buckling behavior of porous Functionally Graded (FG) beams,

incorporating the effects of thickness stretching and porosity
variations. Unlike conventional approaches that assume porosity is
purely governed by the rule of mixtures, this work introduces a novel
perspective by directly relating porosity to the material volume
Revised: January 13,2025 fraction. Two distinct porosity schemes are analyzed: Volume
Accepted: January 19", 2025  Fraction-Dependent porosity (VFD) and Rule of Mixtures-
Dependent porosity (RMD), with four porosity distribution types -
Even, Uneven, Linear (1), and Linear (2). A higher-order shear
deformation theory is developed to account for the thickness
Keywords: stretching effect, enabling precise modeling of transverse shear
stresses without the need for correction factors. The equilibrium
equations are derived using the principle of virtual work and solved
higher-order shear deformation via the Gal;rkin metho'd for a range of boundary conditions.
plate theory; Rule of Mixture Comprehensive parametric studies reveal the influence of structural
porosity Dependent (RMD); ~ geometry, material grading, and porosity types on the critical
Volume Fraction porosity- buckling loads. The findings demonstrate the robustness of the
Dependent (VFD) proposed framework and offer new insights for designing
lightweight and efficient FG structures.

Received: October 05", 2024

buckling behavior; functionally
graded beam,; galerkin method;

1. Introduction

Functionally Graded Structures (FGS) are advanced materials characterized by a
continuous variation in composition and properties, allowing for tailored mechanical performance
in various applications. The incorporation of porosity in FGS offers significant advantages, such
as reduced weight, improved thermal insulation, and enhanced energy absorption capabilities,
making them suitable for lightweight applications in aerospace and automotive industries.
However, the presence of porosity can also lead to disadvantages, including decreased mechanical
strength and stiffness, which may compromise structural integrity under certain loading
conditions. Consequently, the design of functionally graded structures with porosity requires
careful optimization to balance these benefits and drawbacks. Understanding the interplay between
porosity and material properties is crucial for maximizing performance while ensuring reliability.

Numerous studies have investigated the effects of porosity on the mechanical behavior of
Functionally Graded (FG) beams. To investigate the nonlinear static deflections of functionally
graded materials with porosity under thermal effects, Akbas (2017) employed a comprehensive
Lagrangian finite element method within a two-dimensional continuum framework, utilizing the
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Newton - Raphson approach. Atmane et al. (2017) accounted for the effects of thickness stretching
and porosity in their vibrational analysis of functionally graded beams. Su et al. (2019) examined
the impact of surface effects on the static bending behavior of porous functionally graded
nanobeams subjected to a concentrated transverse load, applying Reddy’s higher-order beam
theory. Following Timoshenko beam theory, Mojahedin et al. (2018) conducted a thermoelastic
analysis of functionally graded porous beams under in-plane thermal loading, which was applied
uniformly across the entire beam. Burlayenko and Kouhia (2024) explored the free vibration
characteristics of Functionally Graded Beams (FGBs) with various rectangular cross-sectional
shapes and four distinct porosity distribution patterns, employing the Differential Transform
Method (DTM) while validating their results with a beam model solution to the motion equation.
Eltaher et al. (2018) examined the mechanical bending and vibrational behavior of functionally
graded porous nanobeams through the application of Euler - Bernoulli theory and Finite Element
Methods (FEM). Zouatnia et al. (2024) analyzed the natural oscillations of bi-directional
functionally graded beams using Reddy’s Shear Deformation Theory (RSDT) and Navier’s
method, focusing on composite materials comprising metal and ceramic components. They
calculated the elasticity modulus and density to evaluate how grading parameters influence the
natural frequency by analyzing their effects in both the thickness and longitudinal directions.
Utilizing Reddy’s third-order shear deformation theory along with the nonlinear von-Karman
strain-displacement relationship, Srikarun et al. (2021) examined both linear and nonlinear
bending behaviors of functionally graded porous beams. Hamed et al. (2019) applied Euler -
Bernoulli beam theory and finite element methods to model the mechanical bending characteristics
of functionally graded porous nanobeams. Sah and Ghosh (2022) explored how multi-directional
porosity distributions affect the free vibration and buckling of porous functionally graded plates,
proposing an analytical solution based on Navier’s method. Bagheri et al. (2024) investigated the
influence of pores on the natural frequency and buckling behavior of beams using Classical Beam
Theory (CBT) and the Differential Quadrature Method (DQM). Additionally, Fahsi et al. (2019)
employed a novel enhanced quasi-3D shear deformation theory and Navier’s solution to study the
bending, buckling, and free vibration responses of functionally graded porous beams supported by
an elastic foundation. A finite element model grounded in first-order shear deformation theory was
employed by Zghal and Dammak (2021) to analyze the buckling responses of porous structural
components subjected to various compressive loads. Beitollahi et al. (2024) explored the free
vibration and static bending behaviors of both porous and non-porous square microplates and
nanoplates, discovering that a variable length scale parameter increased the stiffness and stability
of the plates using the Modified Couple Stress Theory (MCST). Utilizing a trigonometric shear
deformation theory in conjunction with finite element methods, Zhang et al. (2020) examined the
damping and free vibration properties of porous functionally graded sandwich plates through the
modified Fourier - Ritz method, integrated with first-order shear deformation theory, analyzing
the effects of both even and uneven porosities on natural vibration and damping performance. Polit
et al. (2019) employed Navier’s solutions alongside a higher-order shear deformation theory to
study the static bending and elastic stability of thick functionally graded graphene platelets
reinforced porous nanocomposite curved beams. Lastly, Adhikari et al. (2020) proposed a finite
element model based on higher-order shear deformation theory to conduct buckling analysis of
porous sandwich functionally graded material plates under various compressive loads.

Masjedi et al. (2019) employed an orthogonal Chebyshev collocation method to analyze
the large deflection behavior of functionally graded porous beams subjected to both conservative
and non-conservative loading conditions. Wang et al. (2020) developed a high-order shear
deformable beam model to investigate the transient response of Porous Sandwich Beams (PSBs).
Gao and Xiao (2019) studied the nonlinear bending behavior of functionally graded porous
nanobeams under various physical stresses using a two-step perturbation technique alongside
nonlocal strain gradient theory. Wattanasakulpong and Ungbhakorn (2014) examined the



nonlinear vibrational responses of functionally graded porous beams with restrained ends. Liu et
al. (2019) investigated the coupling of thermal and mechanical buckling phenomena in a clamped
functionally graded sandwich beam by utilizing high-order sinusoidal shear deformation theory.
Additionally, a quasi-3D shear deformation theory was applied to assess the vibrational
characteristics of functionally graded porous plates (Mellal et al., 2021) supported by a Winkler-
Pasternak foundation. This approach effectively reduced the number of unknown variables while
evaluating the impacts of factors such as porosity, volume fraction index, thickness ratio, and wave
number. Using a modified mixed finite element beam model, Zghal et al. (2020) examined the
impact of porosity on the static bending behavior of functionally graded beams. Fallah and
Aghdam (2024) applied physics-based neural networks to investigate the bending and vibrational
responses of functionally graded porous beams. They utilized Hamilton’s principle to derive the
equations of motion and trained the network parameters to explore how factors such as porosity,
material distribution, porosity distribution type, and elastic foundation influence structural
behavior. Hamed et al. (2020) proposed a parabolic higher-order shear deformation model to
optimize critical buckling loads for thin and thick functionally graded sandwich beams with porous
cores. In another study, Zhang et al. (2024) employed Timoshenko beam theory, Modified Couple
Stress Theory (MCST), and the von Karman geometric nonlinearity hypothesis to evaluate various
factors affecting vibrational behavior, including platelet distribution, taper ratio, and boundary
conditions. Finally, the nonlinear vibration of shear deformable porous sandwich beams was
presented in reference (Chen et al., 2016), utilizing Timoshenko beam theory.

This paper explores the buckling behavior of Functionally Graded (FG) plates by relating
porosity to the volume fraction, diverging from previous research that typically associates porosity
with the rule of mixtures. The analysis is based on higher-order shear deformation theory, and the
equilibrium equations are solved using Galerkin’s method.

2. Material properties

Consider an FG beam with length and thickness “Lxh” (Figure 1). Poisson’s ratio v v is
assumed to be constant. In this study, two scenarios regarding material constituents dependent on
porosity are examined: dependence on the volume fraction of porosity (VFD) and dependence on
the porosity mixing rule (RMD). The effective mechanical properties and volume fraction of
Functionally Graded Materials (FGM) that account for the influence of porosity can be defined as
follows:

2.1. Volume Fraction Porosity Dependent (VFD)
The volume fraction of the ceramic phase, including the effect of porosity, can be expressed
as follows:

v@ =(2+2) -0 €

2 h

Where p and O@(z) is the power law index and the porosity distribution function,
respectively. The Young’s modulus “E” can be expressed as functions of the material composition
or other relevant parameters.

E(z) = (Ec - Em)Vc + Enp (2)

2

Where the subscripts “m” and “c” denote the metallic and ceramic constituents,
respectively, and “V.” represents the volume fraction of the ceramic phase within the beam.
2.2. Rule Mixture Porosity Dependent (RMD)

In the case of porosity dependence based on the mixing rule, the volume fraction of the
ceramic phase in the x-direction can be calculated as follows:
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V@) = (E+2) 3)

h
Where material properties according to the the rule of mixture is given by:
E(z) = Em + (E; — Ep)V: — 6(2) (4)

Four types of porosity distributions have been investigated: even distribution, uneven
distribution, linear distribution (1), and linear distribution (2). The function that characterizes the
porosity can be expressed as follows:

Even porosity:

0(z) =% (5)
Uneven porosity:
0(z) =£(1-2) (6)
Linear (1) porosity:
0@ =3(;+7) )
Linear (2) porosity:
0@ =5 (57) ®

The porosity coefficient is defined by the symbol &, where 0 < & < 0.2. A comparison
analysis between the effect of the first porosity scheme “VFD” and the other “RMD” on the
Young’s modulus of the FGM plate is plotted in Figure 2, considering the different types of
porosity. It is clear that “RMD” has a greater influence on the elastic modulus compared to “VFD”.

The porosity coefficient is represented by the symbol &, where 0 < & < 0.2. A comparative
analysis of the effects of the first porosity scheme, “VFD,” and the alternative scheme, “RMD,”
on the Young’s modulus of the FGM plate is illustrated in Figure 2, taking into account the various
types of porosity. The results indicate that “RMD” has a more significant impact on the elastic
modulus than “VFD”.

Figure 1
Geometry of The FG Beam
Z
Metal
h
X
Ceramic
L

Source. The researcher’s data analysis
Figure 2
Influence of The Porosity Scheme on Young’s Modulus (p = 2, = 0.2)



400

E{‘\HH‘H\H‘H\H‘H\H‘H\\\‘\HH‘\HH‘\HH‘HH\ E 400j‘\\\\\ HH\‘\HH TTTTTTTTTITTTIT I TTI T I T[T T T \\H\‘H\H‘t
360 - 2 360 ; E
= —O— Perfect E = —o— Perfect E
320 E Even E 320 - Even E
g Univen 3 E i 3
280 £ 5 E Univen E
‘\ﬁ = —o— Linear () E ‘\g 280; —ea— Linear (1) E
§ 240 f- —<—Linear () = § 240 - —<— Linear (2) =
S
o 200 - E £ 200F E
S BOE E 3
S - 13 E E
20 £ 2 > E 3
80 £ 3 80 E- 3
: :
40 £ = 40 E 3
2 E = E
05‘\\\\\‘\\H\‘\HH‘H\H‘H\H‘H\\\‘\HH‘\HH‘\HH‘HH\‘E Oi‘\\H\‘HH\‘\HH‘\HH‘\HH‘\HH‘\HH‘HH\‘HH\‘HH\‘E
-05-04-03-02-0100 01 02 03 04 05 -05-04-03-02-0100 01 02 03 04 05

zh zh

Source. The researcher’s data analysis
3. Displacement field

The equilibrium equations governing the bending response of Functionally Graded
Material (FGM) beams are established using a quasi-3D shear deformation theory. The total
displacement at any point within the structure can be represented as follows:

u(x,z,t) =uy — Z% + ®(2) @,
w(x,z,t) = wy + ®(2)'@,

9)

The shape function ®(z), which defines the distribution of transverse shear strains and
stresses through the thickness of the nanobeam, is expressed as follows:

®(z) = 5h x atan (ﬁ) — 4z (10)

The shape function ®(z) is selected to ensure compliance with the stress-free boundary

conditions at both the top and bottom surfaces of the nanobeam, thereby eliminating the need for
a shear correction factor.

The nonzero strains corresponding to the deformations described above are given by:

Oxx Qi1 Qi3 0 J(&xx
{GZZ} = [Qm Q33 O HEZZ} (11
0 0  QsslWxz

TXZ

Since the normal strain in the z-direction can be neglected (indicating non-stretching), we
have 52) = 0. Therefore, it follows that:

E
Qu=1_
VvE
Qus = 2= (12)
E
Css 2(1+v)

4. Variational statements

The total potential energy principle is utilized to derive the equilibrium equations for the
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FG nanobeams:

h/2 L
f—h/Z fO [Uxx5£xx t 027622 + szyxz] dxdz — f

— [} kuwobw, + kg 22 2

+ k,wo3 5w0dx

k., and kg represent the linear Winkler stiffness and the shear layer stiffness, respectively.

The equilibrium equations can be expressed as follows:
MNax _
ax

—k W0+kgaz

_sz_o

anz _
o R,=0

62MXX 06 Wy
axz Nx 9x2 kNLWO =O

(14)

anx

Where
h/2 ou
Nxx = f—h/z Oxx dz = A11 ° Bll

h/2 6u
My, = f h/2 Oxx 2zdz = Bll > —Di1——

h/2
fh/z Oxx P(2)dz = C11 6 F11

92wy
0x2
2%wyg
dx2
92wy

6§0x

+ C11 + A130,

0@,
ax

+ €130, (15)

a(Px

+ F11 + 313

6<Px

Pxx - +H11
h/2 0p,
Qxz = f hy2 txz ®(2)'dz = Ass ((px +%)

h/2 " 82
RZ = f—h/z O-ZZ(D(Z) dz = A13 6 BlB WO

a(Px

+ Cl3 + D139,

5. Nonlocal strain gradient theory

By considering the combined physical effects of strain gradient stress and nonlocal elastic
stress fields, a stress function is proposed as follows:

(€))
do
0
oy =0 ——L (16)
Where aa(] ) and a(] ) represent the classical stress corresponding to the strain &g; and the

€3]

higher-order stress o corresponding to the strain gradient &y, respectively. These can be

expressed as:

‘7(0) sz]klao(xx eo) €y (x)dx’

1
Gi(]') = lz fo Cijklal(x;x ’ e1a)€kl,x(x )dx

(17)

Cijr; denotes an elastic constant, and [ 1 is the material length scale parameter introduced

to account for the influence of the strain gradient stress field. The parameters eeya and e;a are
nonlocal parameters introduced to capture the significance of the nonlocal elastic stress field.

The nonlocal kernel functions ay(x, x’,epa) and a,(x,x’, eja) satisfy the established
conditions. Consequently, the general constitutive relation can be expressed as:
[1 - (e;a)*V?][1 — (epa)?V?]oy; = Cijii[1 — (e10)*VP]exy — Cijral®[1 — (epa)?VZ]V2ey, (18)

V2 denotes the Laplacian operator. In the current analysis, we assume that the coefficient
e = ey = e;. Therefore, the total nonlocal strain gradient constitutive relation can be expressed as
[1—uV?]oy; = Cijiall — AV?]ey, (19)

Where u = (ea)? and A = [2.

Based on the nonlocal strain gradient theory, the equilibrium equations can be formulated as:



92 0%ug 23w %@, 09\
(1-255) (A 52 — Bu 52+ Cu 55 + 4 52) = 0
_ 6_2 Buy 2*wyg 03¢, 9%,
(1 Aaxz) (Bll 0x3 Dll dx* + F11 0x3 + Bl3 6x2)
92 92w 92w

~ (1= ng) (W2 T ko = ey G2 = uwo?) = 0 (20)

92 9%u 3w, %y 99z\ _
(1 - Aﬁ) (Cll_axZO - F11_ax30 + Hyp 55 Ass@x — (Ass — Cy3) o ) =0

62W0 0

92 7] 0Py 9,
(1 - Aﬁ) (—A13 % +Biz 55 + (Ass — C13) % + Ass a;pz - D13<Pz) =0
The coefficients AijaBija Dija Cija
n/2 ..
{4ij, Bij, Dij, Cijy Fip Hik = [, Q11{1, 2,2, @(2), 29(2), @(2)*}dz, (i, j = 1,2,6)

h/2 ,
Ass = [, QssP(2) " dz

(A3, Biz, iz} = [1]7, 01o{0(2)", 20(2)", ®(2)(2)"}dz

h/z 144
Dys = [117, Q55 ®(2) %dz

F;j and H;; are defined as
(21)

6. Solutions method

This section presents an analytical approach to the equilibrium equations for the FGM
nanobeam with simply supported or hinged-hinged (SS) and clamped-clamped (CC) boundary
conditions, with the displacement field satisfying these conditions expressed as:

(o, 9} = Noner U P} o (22)

{wo, 0.} = Xm=1{Wm, Yzm}Xm
Here, U,,, Wy, Y,mand W, are arbitrary parameters. The function X,,, (x) that satisfy the
different boundary conditions are given as

e For Simply supported beam (SS)
mm
X, = sin(Bx),B = - (23)
e For Clamped-Clamped beam (CC)
2mmn
Xm =1—cos(fx),f =—— (24)

By substituting Egs. (22) in Eq. (20);

Kll K12 K13 K14 Um
Ka1 Kz Kaz Kau|) Wi
K31 K32 K33 K34- l/)xm
K4-1 K4-2 K4-3 K44 lpzm

Stiffness matrix [K] elements are presented in Appendix A.

=0 (25)

7. Results and discussion

An FGM beam composed of a mixture of metal and ceramic, specifically an Aluminum
alloy (Al) and Alumina (AL2O3), is analyzed under various boundary conditions. The material
properties are as follows: for Aluminum, Young’s modulus E,, = 70GPa, and for Alumina E, =
380GPa. The Poisson’s ratio is constant atv = 0.3.
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g kL .
Ao’ " A’ Y A

Where the coefficient A;4, is of beam made of metal material.

N = K (26)

7.1. Comparative study

As an initial example, the results for FG beams derived from the present theory are
compared with those obtained using the higher-order shear deformation theory (2D-HSDT) and
quasi-3D higher-order beam theory by Vo et al. (2014), Vo et al. (2015). The comparisons are
summarized in Table 1 for FG beams with different configurations. A strong agreement between
the present results and previous solutions is evident.

Table 1
Comparison of Dimensionless Critical Buckling of FGM Beams
il » Vo et(z;l].)()2014) Present (2D) E(E‘)};(;I‘ Vo et(z;l].)()ZOIS) Present (3D) E(E‘)};(;I‘
CcC
0 154.55 152.1476 1.55 160.107 161.9546 1.15
0.5 103.749 102.2679 1.43 107.655 109.1413 1.38
1 80.6087 79.4836 1.40 83.6958 84.9202 1.46
2 61.7925 60.8785 1.48 64.1227 64.947 1.29
5 47.7562 46.8872 1.82 49.3856 49.6039 0.44
10 41.8042 40.9887 1.95 43.1579 433212 0.38
5 SS
0 48.8401 48.596 0.50 49.5901 49.6677 0.16
0.5 32.0094 31.8654 0.45 32.5867 32.7142 0.39
1 24.6911 24.5838 0.43 25.2116 25.3845 0.69
2 19.1605 19.071 0.47 19.6124 19.7906 0.91
5 15.74 15.6436 0.61 16.0842 16.1693 0.53
10 14.1468 14.0513 0.68 144116 14.4458 0.24
CcC
0 195.361 194.3839 0.50 198.706 207.4437 4.40
0.5 128.05 127.4616 0.46 130.576 136.3172 4.40
1 98.749 98.3352 0.42 101.02 105.3848 4.32
2 76.6677 76.284 0.50 78.5783 81.8435 4.16
10 5 62.9786 62.5742 0.64 64.435 66.8867 3.80
10 56.5971 56.2051 0.69 57.7339 59.9498 3.84
SS
0 52.3082 52.2379 0.13 52.5361 52.6105 0.14
0.5 34.0087 33.9662 0.12 34.2724 34.3996 0.37




il » Vo et(z;ll.)()2014) Present (2D) E(I(;;(;I‘ Vo et(z;ll.)()ZOIS) Present (3D) E(I(;;(;I‘

CC

1 26.1727 26.1409 0.12 26.4869 26.6722 0.70

2 20.3936 20.3663 0.13 20.7164 20.9261 1.01

5 17.1118 17.0818 0.18 17.358 17.4951 0.79

10 15.5291 15.4994 0.19 15.6895 15.7579 0.44
CC

0 209.233 208.9516 0.13 210.489 222.8882 5.89

0.5 136.049 135.8649 0.14 137.316 145.2229 5.76

1 104.716 104.5636 0.15 106.12 112.0462 5.58

2 81.6035 81.4652 0.17 82.9975 87.4828 5.40

5 68.4689 68.3271 0.21 69.5392 73.2461 5.33

10 62.1282 61.9977 0.21 62.8546 66.2914 5.47
20 ss

0 53.2546 53.2365 0.03 53.3075 53.3878 0.15

0.5 34.5488 34.536 0.04 34.7084 34.84 0.38

1 26.5718 26.562 0.04 26.8174 27.0089 0.71

2 20.7275 20.7186 0.04 21.0066 21.2266 1.05

5 17.4935 17.4843 0.05 17.7048 17.858 0.87

10 15.9185 15.91 0.05 16.0416 16.1209 0.49

Note.Error (%) = |(Neresent — Nres)/Nres| X 100%
Source. Data analysis result of the research

7.2. Parametric study
7.2.1. Materials properties effect

[199%2)

The effect of the power index “p” and the porosity coefficient “£” on the dimensionless
critical buckling load of simply supported FG beams is shown in Table 2 and Figures 3 and 4 for
Volume Fraction Distribution (VFD) and the Rule of Mixtures Distribution (RMD). In Figure 3,
it is evident that the inclusion of porosity reduces the stiffness of the beam. The maximum critical
buckling load values are achieved in the case of a perfect beam, where pores are absent. Among
the porous beams, the highest critical buckling loads are associated with linear porosity (Type 1),
while the lowest is observed for even porosity.

In Figure 4, the value of p = 0 indicates that the beam is composed entirely of ceramic,
leading to the highest critical buckling load values due to the superior stiffness of the beam in both
RMD and VFD cases. As the index “p” increases, the buckling load decreases significantly within
the range 0 < p < 4, after which the reduction becomes more gradual.

Table 2

Effect of The Power Index “p” and Porosity Coefficient “¢” on The Dimensionless Critical
Buckling Load (L = 10h,SS,u = A=K, = K; =0)



£ p VFD RMD
Even | Uneven |Linear (1) |Linear (2)| Even | Uneven |Linear (1)|Linear (2)
0 | 52.6105 | 52.6105| 52.6105 | 52.6105 | 52.6105 | 52.6105| 52.6105 | 52.6105
1 | 26.6722 |26.6722 | 26.6722 | 26.6722 | 26.6722 | 26.6722 | 26.6722 | 26.6722
0 2 | 20.9261 | 20.9261 | 20.9261 | 20.9261 | 20.9261 |20.9261 | 20.9261 | 20.9261
5 | 17.4951 | 17.4951 | 17.4951 17.4951 | 17.4951 | 17.4951 | 17.4951 17.4951

10 | 15.7579 | 15.7579 | 15.7579 | 15.7579 | 15.7579 | 15.7579| 15.7579 | 15.7579
51.5375 | 52.3311 | 52.0723 | 52.0723 | 51.0454 | 52.2213| 51.8252 | 51.8252
25.4337 | 26.3161 | 26.2835 | 25.8194 | 24.8290 | 26.1407 | 26.1077 | 25.3883
0.05 | 2 | 19.5686 | 20.5113| 20.5520 | 19.9411 | 18.8985 |20.3046 | 20.3804 | 19.4429
5 | 16.1269 | 17.0667 | 17.1168 | 16.5033 | 15.4616 | 16.8602 | 16.9486 | 16.0061
10 | 14.4980 | 15.3770 | 15.3638 | 14.8860 | 13.9009 | 15.1988 | 15.1904 | 14.4560
0 | 50.4645 | 52.0515| 51.5308 | 51.5308 | 49.4813 | 51.8322| 51.0346 | 51.0346
1 | 24.1823 | 25.9568 | 25.8940 | 24.9480 | 22.9572 | 25.6030 | 25.5436 | 24.0658
0.1 | 2 | 18.1811 |[20.0897 | 20.1778 | 18.9243 | 16.8035 | 19.6690 | 19.8361 17.8927
5 | 14.7139 | 16.6272| 16.7379 | 15.4662 | 13.3219 | 16.2014 | 16.4024 | 14.4165
10 | 13.2028 | 14.9857 | 14.9676 | 13.9700 | 11.9569 | 14.6165| 14.6195 | 13.0530
0 | 49.3915 | 51.7717| 50.9859 | 50.9859 | 47.9181 |51.4432| 50.2381 | 50.2381
1 | 22.9163 | 25.5944 | 25.5040 | 24.0570 | 21.0517 | 25.0585| 24.9798 | 22.7012
0.15 | 2 | 16.7583 | 19.6608 | 19.8034 | 17.8727 | 14.6240 | 19.0175| 19.2932 | 16.2674
5 | 13.2448 | 16.1754 | 16.3583 | 14.3778 | 11.0340 | 15.5147 | 15.8561 12.7084
10 | 11.8610 | 14.5822 | 14.5691 13.0034 | 9.8800 | 14.0052 | 14.0440 | 11.5264
0 | 48.3186 | 51.4916| 50.4373 | 50.4373 | 46.3557 | 51.0542 | 49.4353 | 49.4353
1 | 21.6338 | 25.2286 | 25.1132 | 23.1451 | 19.1058 | 24.5068 | 24.4160 | 21.2906
0.2 | 2 | 152939 [ 19.2240 | 19.4288 | 16.7833 | 12.3365 | 18.3485 | 18.7514 | 14.5576
5 | 11.7039 | 15.7098 | 15.9780 | 13.2313 | 8.5295 | 14.7950 | 15.3093 | 10.8591
10 | 10.4560 | 14.1646 | 14.1679 | 11.9777 | 7.5849 | 13.3563 | 13.4624 9.8461

==

o

Source. Data analysis result of the research

Figure 3

Effect of The Porosity Coefficient “({” on The Dimensionless Critical Buckling of Simply
Supported FG Beam (p = 2,L = 10h,u=1= K, =K; =0)
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Figure 4
Effect of The Power Law Index
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7.2.2. Beam geometry effect
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The effect of the geometric parameter L/h and boundary conditions on the critical buckling
load of simply supported FG beams with even porosity is presented in Table 3. The power law
index and the porosity coefficient are set at p = 2 and & = 0.2. It is observed that increasing the
thickness ratio leads to an increase in the dimensionless critical buckling load.

Table 3

The Effect of The Geometric Parameter “L/h” and Boundary Conditions on The Critical Buckling
Load (p = 2,Even,§ =02,u=1= K, =K; =0)

BCs | L/h VFD RMD
Even Uneven |Linear (1) |Linear (2)| Even | Uneven |Linear (1) | Linear (2)
5 14.5386 | 18.1098 | 18.3438 159723 | 11.7904 | 17.2831 | 17.6917 13.9217
10 | 15.2939 | 19.2240 | 19.4288 16.7833 | 12.3365 | 18.3485 | 18.7514 14.5576
SS 15 | 15.4407 | 19.4431 | 19.6414 | 16.9406 | 12.4420 | 18.5582 | 18.9591 14.6803
20 | 154926 | 19.5208 | 19.7167 | 16.9963 | 12.4792 | 18.6326 | 19.0328 14.7236
30 | 15.5298 | 19.5766 | 19.7707 | 17.0362 | 12.5060 | 18.6860 | 19.0856 14.7547
5 48.5015 | 58.7381 | 59.8892 | 53.4711 |39.8580|55.9777| 57.4295 47.2735
10 | 59.8554 | 74.7629 | 75.8784 | 65.7669 |47.8632 | 71.0541 | 72.5384 56.9402
CC | 15 | 62.5462 | 78.7140 | 79.7916 | 68.6674 |49.6958 | 74.7600 | 76.2192 59.1619
20 | 63.5443 | 80.1953 | 81.2557 | 69.7420 | 50.3696 | 76.1482 | 77.5947 59.9795
30 | 642764 | 81.2872 | 82.3340 | 70.5298 | 50.8617 | 77.1711 | 78.6071 60.5770
5 4.1674 | 5.2876 5.3758 4.5747 3.2340 | 4.9897 5.0706 3.8922
10 4.2471 5.4068 5.4957 4.6607 3.2840 | 5.0990 | 5.1791 3.9555
CF | 15 4.2622 5.4295 5.5185 4.6770 | 3.2935 | 5.1199 5.1997 3.9675
20 4.2675 5.4375 5.5266 4.6827 3.2968 | 5.1272 5.2070 3.9717
30 4.2713 5.4432 5.5323 4.6869 3.2992 | 5.1324 | 5.2122 3.9747
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Source. Data analysis result of the research
7.2.3. Small scale effect

Table 4 and Figure 5 demonstrate the effects of the nonlocal parameter “u” and the length-
scale parameter “A” on the dimensionless critical buckling load of FG beams. It is noted that as
the nonlocal parameter “u” increases, the dimensionless critical buckling load decreases,
suggesting that the nonlocal effect induces a stiffness-softening behavior. In contrast, an increase

in the length-scale parameter “A” results in a rise in the dimensionless critical buckling load.
Table 4

Effect of the Nonlocal Parameter “u” and Length Scale Parameter “A” on The Dimensionless
Critical Buckling Load (p = 2,§ = 0.2,L = 10h,SS,K,, = K; = 0)

VFD RMD
Even Uneven |Linear (1) |Linear (2)| Even Uneven |Linear (1) | Linear (2)
0 | 152939 | 19.2240 | 19.4288 | 16.7833 | 12.3365 | 18.3485 | 18.7514 | 14.5576
0.5 | 16.0408 | 20.1645 | 20.3813 | 17.6032 | 12.9378 | 19.2454 | 19.6710 | 15.2675
0 1 | 16.7878 | 21.1050 | 21.3337 | 18.4232 | 13.5391 | 20.1424 | 20.5905 | 15.9773
1.5 | 17.5348 | 22.0456 | 22.2862 | 19.2432 | 14.1404 | 21.0393 | 21.5101 16.6871
2 | 18.2818 | 22.9861 | 23.2386 | 20.0632 | 14.7418 | 21.9362 | 22.4297 | 17.3970
0 | 14.5746 | 18.3199 | 18.5151 15.9940 | 11.7564 | 17.4856 | 17.8696 | 13.8730
0.5 | 15.2865 | 19.2162 | 19.4228 | 16.7754 | 12.3294 | 18.3404 | 18.7459 | 14.5495
0.5 | 1 | 159984 | 20.1125 | 20.3304 | 17.5568 | 12.9024 | 19.1951 | 19.6222 | 15.2259
1.5 | 16.7102 | 21.0088 | 21.2381 18.3382 | 13.4755 | 20.0499 | 20.4985 | 15.9024
2 | 17.4221 | 21.9052 | 22.1458 | 19.1196 | 14.0485 | 20.9046 | 21.3749 | 16.5788
0 | 13.9200 | 17.4971 | 17.6835 | 15.2756 | 11.2283 | 16.7003 | 17.0669 | 13.2499
0.5 | 14.5999 | 18.3531 | 18.5504 | 16.0219 | 11.7756 | 17.5166 | 17.9039 | 13.8960
1 1 | 152798 | 19.2092 | 19.4173 | 16.7682 | 12.3229 | 18.3330 | 18.7409 | 14.5420
1.5 | 159597 | 20.0652 | 20.2842 | 17.5146 | 12.8702 | 19.1493 | 19.5779 | 15.1881
2 | 16.6396 | 209213 | 21.1511 18.2609 | 13.4175 | 19.9657 | 20.4148 | 15.8342
0 | 13.3217 | 16.7450 | 16.9234 | 14.6190 | 10.7457 | 15.9824 | 16.3333 | 12.6804
0.5 | 13.9723 | 17.5642 | 17.7530 | 15.3332 | 11.2694 | 16.7637 | 17.1343 | 13.2987
L5 | 1 | 14.6230 | 18.3835 | 18.5827 | 16.0475 | 11.7932 | 17.5449 | 17.9353 | 13.9170
1.5 | 152737 | 19.2027 | 19.4123 | 16.7617 | 12.3170 | 18.3262 | 18.7363 | 14.5353
2 | 159243 | 20.0220 | 20.2419 | 17.4759 | 12.8408 | 19.1075 | 19.5373 | 15.1536
0 | 12.7726 | 16.0549 | 16.2259 | 14.0165 | 10.3028 | 15.3237 | 15.6602 | 12.1578
0.5 | 13.3965 | 16.8404 | 17.0214 | 14.7013 | 10.8050 | 16.0728 | 16.4282 | 12.7506
2 1 | 14.0203 | 17.6258 | 17.8168 | 15.3861 | 11.3072 | 16.8219 | 17.1961 13.3434
1.5 | 14.6442 | 18.4113 | 18.6122 | 16.0709 | 11.8094 | 17.5709 | 17.9641 13.9362
2 | 152680 | 19.1968 | 19.4077 | 16.7557 | 12.3116 | 18.3200 | 18.7321 14.5290

u A

Source. Data analysis result of the research
Figure 5

Effect of The Nonlocal Parameter “u” and The Length Scale Parameter “A” on The
Dimensionless Critical Buckling of Simply Supported FG Beam (p = 2,Even,{ =0.2,L =
10n,K,, =K;=0)
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7.2.4. Winker/Pasternak elastic foundation effect

Table 5 and Figure 6 illustrates the dimensionless critical buckling load of FG beams
influenced by Winkler/Pasternak elastic foundations. The inclusion of the foundation enhances the
rigidity of the beams, with increases in the parameters “K,,” and “K;” leading to higher values of

the dimensionless critical buckling load.
Table 5

The Effect of The Elastic Foundation Parameters “K,,” and “K," on The Critical Buckling Load
=2¢&=02SS,u=1=0)

Ko (x 1072)| K, (x 107%) VFD RMD

Even | Uneven | Linear | Linear Even | Uneven | Linear | Linear
0.0 15.2940 | 19.2241 | 19.4290 | 16.7834 | 12.3366 | 18.3487 | 18.7514 | 14.5576
0.2 17.6940 | 21.6241 | 21.8290 | 19.1834 | 14.7366 | 20.7487 | 21.1514 | 16.9576
0 005 21.2940 | 25.2241 | 25.4290 | 22.7834 | 18.3366 | 24.3487 | 24.7514 | 20.5576
008 24.8940 | 28.8241 | 29.0290 | 26.3834 | 21.9366 | 27.9487 | 28.3514 | 24.1576
1.0 27.2940 | 31.2241 | 31.4290 | 28.7834 | 24.3366 | 30.3487 | 30.7514 | 26.5576
0.0 17.7257 | 21.6558 | 21.8607 | 19.2151 | 14.7683 | 20.7804 | 21.1831 | 16.9893
0.2 20.1257 | 24.0558 | 24.2607 | 21.6151 | 17.1683 | 23.1804 | 23.5831 | 19.3893
2 0.5 23.7257 | 27.6558 | 27.8607 | 25.2151 | 20.7683 | 26.7804 | 27.1831 | 22.9893
0,8 27.3257 | 31.2558 | 31.4607 | 28.8151 | 24.3683 | 30.3804 | 30.7831 | 26.5893
1.0 29.7257 | 33.6558 | 33.8607 | 31.2151 | 26.7683 | 32.7804 | 33.1831 | 28.9893
0.0 21.373225.3034 | 25.5082 | 22.8627 | 18.4158 | 24.4280 | 24.8307 | 20.6369
0.2 23.7732|27.7034 | 27.9082 | 25.2627 | 20.8158 | 26.8280 | 27.2307 | 23.0369
5 0.5 27.3732131.3034 | 31.5082 | 28.8627 |24.4158|30.4280 | 30.8307 | 26.6369
0.8 30.9732 | 34.9034 | 35.1082 | 32.4627 | 28.0158 | 34.0280 | 34.4307 | 30.2369
1.0 33.3732|37.3034 | 37.5082 | 34.8627 | 30.4158 | 36.4280 | 36.8307 | 32.6369
0.0 25.0208 | 28.9510 | 29.1558 | 26.5102 | 22.0634 | 28.0755 | 28.4782 | 24.2845
0.2 27.4208 | 31.3510 | 31.5558 | 28.9102 | 24.4634 | 30.4755 | 30.8782 | 26.6845
8 0.5 31.0208 | 34.9510 | 35.1558 | 32.5102 | 28.0634 | 34.0755 | 34.4782 | 30.2845
0.8 34.6208 | 38.5510 | 38.7558 | 36.1102 | 31.6634 | 37.6755 | 38.0782 | 33.8845
1.0 37.0208 | 40.9510 | 41.1558 | 38.5102 | 34.0634 | 40.0755 | 40.4782 | 36.2845
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K, (x 1072) | K, (x 107%) VFD RMD

Even | Uneven | Linear | Linear Even | Uneven | Linear | Linear
0.0 27.4525131.3827 | 31.5875 | 28.9419 | 24.4951|30.5072 | 30.9100 | 26.7162
0.2 29.8525(33.7827 | 33.9875 | 31.3419 | 26.8951 | 32.9072 | 33.3100 | 29.1162
10 0.5 33.4525|37.3827 | 37.5875 | 34.9419 | 30.4951 | 36.5072 | 36.9100 | 32.7162
0.8 37.0525|40.9827 | 41.1875 | 38.5419 | 34.0951 | 40.1072 | 40.5100 | 36.3162
1.0 39.4525|43.3827 | 43.5875 | 40.9419 | 36.4951 | 42.5072 | 42.9100 | 38.7162

Source. Data analysis result of the research
Figure 6

Effect of Winkler Foundation Parameter “K,,” and Pasternak Foundation Parameter “K;" on

The Dimensionless Critical Buckling of Simply Supported FG Beam (p = 2,L = 10h,{ =
02,u=1=0)
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8. Conclusion

In conclusion, this study provides a comprehensive analysis of the impact of porosity on
the buckling behavior of functionally graded beams. By integrating two distinct porosity schemes
- volume fraction-dependent and rule of mixtures-dependent - we established a novel framework
that clarifies the relationship between porosity and material volume fraction.

The analysis demonstrates that increases in the porosity coefficient result in significant
reductions in critical buckling loads, regardless of the type of porosity distribution. Furthermore,
we investigated the effects of geometric parameters, nonlocal influences, and foundation stiffness
on the overall structural rigidity and stability.

The proposed technique is currently limited to simple beams with uniform thickness,
straight geometries, and specific boundary conditions, namely simply supported and clamped
configurations.

Overall, this work enhances the understanding of how porosity and material distribution
affect the mechanical performance of functionally graded beams, offering valuable insights for the
design and optimization of advanced materials in engineering applications. Future research could
focus on experimental validation of the proposed models and the exploration of various material
combinations and loading conditions.
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