Structural mechanics [A probabilistic study of nonlinear behavior in beams resting on tensionless soil with geometric considerations]

##plugins.themes.academic_pro.article.main##

Seguini Meriem - meriem.seguini@univ-usto.dz
Nedjar Djamel

Abstract

The nonlinear analysis of a beam resting on nonlinear random tensionless soil was studied with the aim of quantifying the influence of the spatial variability of the tension soil characteristics on the behavior of the beam and illustrating the importance of the geometric nonlinear analysis of a beam. The soil-structure interaction mechanism is taken into account where the soil is modeled as nonlinear. Due to large deflections and moderate rotations of the beam, the Von-Kàrman type nonlinearity based on the finite element formulation of nonlinear beam response is adopted, and the frictional resistance at the beam’s interface is taken into account. The study assesses the impact of various factors, including geometric and material nonlinearities, as well as the spatial variability of soil properties, aiming to understand the behavior of the beam in real-world conditions. Additionally, the study seeks to determine the effectiveness of a probabilistic approach in evaluating the reliability of the beam’s response. The results indicate that the probabilistic approach of the soil and the geometric nonlinearity of the beam serve a major role in the evaluations of the beam response.

Keywords

coefficient of subgrade reaction (vertical, horizontal), FEM, geometric and material nonlinearity, Monte Carlo method, soil-structure interaction, spatial variability

How to Cite
Meriem, S., & Djamel, N. (2024). Structural mechanics [A probabilistic study of nonlinear behavior in beams resting on tensionless soil with geometric considerations]. HCMCOU Journal of Science – Advances in Computational Structures, 14(1), 10–19. https://doi.org/10.46223/HCMCOUJS.acs.en.14.1.45.2024

References

  1. Ayoub, A. (2003). Mixed formulation of nonlinear beam on foundation elements. Comptures & Structures, 81(7), 411-421. DOI: https://doi.org/10.1016/S0045-7949(03)00015-4
  2. Bowles, J. (1988). Foundation analysis and design. New York, NY: McGraw-Hill, Inc.
  3. Fenton, G. A., & Griffiths, D. V. (2003). Bearing-capacity prediction of spatially random c φ soils. Canadian Geotechnical Journal, 40(1), 54-65. DOI: https://doi.org/10.1139/t02-086
  4. Fenton, G. A., & Vanmarcke, E. H. (1990). Simulation of random fields via local average subdivision. Journal of Engineering Mechanics, 116(8), 1733-1749. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1733)
  5. Griffiths, D., Paiboon, J., Huang, J., & Fenton, G. A. (2008). Numerical analysis of beams on random elastic foundations. Paper presented at the Proceedings of the 9th international congress on numerical methods in engineering and scientific applications, CIMENICS.
  6. Irschik, H., & Gerstmayr, J. (2009). A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: The case of plane deformations of originally straight Bernoulli-Euler beams. Acta Mechanica, 206(1/2), 1-21. DOI: https://doi.org/10.1007/s00707-008-0085-8
  7. Jang, T. S. (2013). A new semi-analytical approach to large deflections of Bernoulli–Euler-v. Karman beams on a linear elastic foundation: Nonlinear analysis of infinite beams. International Journal of Mechanical Sciences, 66, 22-32. DOI: https://doi.org/10.1016/j.ijmecsci.2012.10.005
  8. Kordkheili, S. H., & Bahai, H. (2008). Non-linear finite element analysis of flexible risers in presence of buoyancy force and seabed interaction boundary condition. Archive of Applied Mechanics, 78, 765-774. DOI: https://doi.org/10.1007/s00419-007-0190-5
  9. Kordkheili, S. H., Bahai, H., & Mirtaheri, M. M. (2011). An updated Lagrangian finite element formulation for large displacement dynamic analysis of three-dimensional flexible riser structures. Ocean Engineering, 38(5/6), 793-803. DOI: https://doi.org/10.1016/j.oceaneng.2011.02.001
  10. Lacasse, S. (2001). Geotechnical solutions for the offshore synergy of research and practice. Houston, TX: University of Houston.
  11. Mullapudi, R., & Ayoub, A. (2010). Nonlinear finite element modeling of beams on two-parameter foundations. Computers and Geotechnics, 37(3), 334-342. DOI: https://doi.org/10.1016/j.compgeo.2009.11.006
  12. Nedjar, D., Hamane, M., Bensafi, M., Elachachi, S., & Breysse, D. (2007). Seismic response analysis of pipes by a probabilistic approach. Soil Dynamics and Earthquake Engineering, 27(2), 111-115. DOI: https://doi.org/10.1016/j.soildyn.2006.06.001
  13. Phoon, K.-K., & Kulhawy, F. H. (1999). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625-639. DOI: https://doi.org/10.1139/t99-039
  14. Popescu, R., Deodatis, G., & Nobahar, A. (2005). Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics, 20(4), 324-341. DOI: https://doi.org/10.1016/j.probengmech.2005.06.003
  15. Reddy, J. N. (2015). An introduction to nonlinear finite element analysis: With applications to heat transfer, fluid mechanics, and solid mechanics. Oxford, UK: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199641758.001.0001
  16. Santos, H. A. F. A. (2015). A novel updated Lagrangian complementary energy-based formulation for the elastica problem: Force-based finite element model. Acta Mechanica, 226(4), 1133-1151. DOI: https://doi.org/10.1007/s00707-014-1237-7
  17. Sapountzakis, E., & Kampitsis, A. E. (2011). Nonlinear analysis of shear deformable beam-columns partially supported on tensionless three-parameter foundation. Archive of Applied Mechanics, 81, 1833-1851. DOI: https://doi.org/10.1007/s00419-011-0521-4
  18. Sapountzakis, E., & Kampitsis, A. E. (2013). Inelastic analysis of beams on two-parameter tensionless elastoplastic foundation. Engineering Structures 48, 389-401. DOI: https://doi.org/10.1016/j.engstruct.2012.09.012
  19. Seguini, M., & Nedjar, D. (2017a). Modelling of soil-structure interaction behaviour: Geometric  nonlinearity of buried structures combined to spatial variability of soil. European Journal of Environmental Civil Engineering, 21(10), 1217-1236. DOI: https://doi.org/10.1080/19648189.2016.1153525
  20. Seguini, M., & Nedjar, D. (2017b). Nonlinear analysis of deep beam resting on linear and nonlinear random soil. Arabian Journal for Science Engineering, 42, 3875-3893. DOI: https://doi.org/10.1007/s13369-017-2449-7
  21. Seguini, M., & Nedjar, D. (2020). Dynamic and probabilistic analysis of shear deformable pipeline resting on two parameter foundation. Periodica Polytechnica Civil Engineering, 64(2), 430-437. DOI: https://doi.org/10.3311/PPci.14927
  22. Seguini, M., Khatir, S., Nedjar, D., & Wahab, M. A. (2022). Machine learning for predicting pipeline displacements based on soil rigidity. Paper presented at the Proceedings of the 10th International Conference on Fracture Fatigue and Wear: FFW 2022, 2-3 August, Ghent University, Belgium. DOI: https://doi.org/10.1007/978-981-19-7808-1_4
  23. VanMarcke, E. H. (1983). Random fields: Analysis and synthesis. Cambridge, MA: MIT Press.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.