Numerical investigation the influence of layers number and their orientation in a CFRP using improved ANN

##plugins.themes.academic_pro.article.main##

Abdeldjebar Zara
Idir Belaidi
Noureddine Fahem
Chouaib Aribi
Abdelmoumin Oulad Brahim - moumindoc@gmail.com
Erica Magagnini
Abdelwahhab Khatir

Abstract

Technological advancements in the field of artificial intelligence have enabled significant progress in various areas, particularly in optimizing the structural configuration of multi-layer composites. The main objective of this study is to investigate how geometric parameters, such as fiber orientation and number of layers, influence the mechanical properties of these materials. To predict the mechanical properties based on the number and orientation of layers during bending tests, we used a hybrid E-Jaya-ANN optimization technique and compared it with the hybrid Jaya-ANN to evaluate the accuracy of the approach. Additionally, using ABAQUS software, a numerical model has been created based on Hashin’s damage criterion to predict the behavior of composite specimens (CFRP) under bending loads and to collect a number of databases starting with the validation model. Subsequently, we generated a series of numerical results representing various practical scenarios to serve as a basis for training an Improved Artificial Neural Network (IANN). Our ability to obtain a better architecture for the laminated layers was made possible by the influence and variation of these materials’ mechanical properties.

Keywords

composite laminate, E-Jaya-ANN, fiber orientations, Jaya-ANN, number of layers

How to Cite
Zara, A., Belaidi, I., Fahem, N., Aribi, C., Oulad Brahim, A., Magagnini, E., & Khatir, A. (2024). Numerical investigation the influence of layers number and their orientation in a CFRP using improved ANN. HCMCOU Journal of Science – Advances in Computational Structures, 14(1), 20–32. https://doi.org/10.46223/HCMCOUJS.acs.en.14.1.46.2024

References

  1. Achouri, F., Khatir, A., Smahi, Z., Capozucca, R., & Brahim, A. O. (2023). Structural health monitoring of beam model based on swarm intelligence-based algorithms and neural networks employing FRF. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(12), Article 621. doi:10.1007/s40430-023-04525-y DOI: https://doi.org/10.1007/s40430-023-04525-y
  2. Ahmed, A., & Wei, L. (2014). An experimental investigation on the three-point bending behavior of composite laminate. IOP Conference Series: Materials Science and Engineering, 62(1), Article 012016. doi:10.1088/1757-899X/62/1/012016 DOI: https://doi.org/10.1088/1757-899X/62/1/012016
  3. Berton, J., Coussa, F., Berthe, J., Brieu, M., & Deletombe, E. (2022). Definition of [±45°]ns specimen geometry to characterize CFRP non linear shear behavior in dynamic loading. Composites Communications, 30, Article 101096. doi:10.1016/j.coco.2022.101096 DOI: https://doi.org/10.1016/j.coco.2022.101096
  4. Can, A., & Meram, A. (2022). Dynamic behavior of screwed joints for CFRP composite laminate structures under impact loading. Journal of Manufacturing Processes, 75, 232-242. doi:10.1016/j.jmapro.2022.01.016 DOI: https://doi.org/10.1016/j.jmapro.2022.01.016
  5. Capozucca, R., & Bonci, B. (2015). Notched CFRP laminates under vibration. Composite Structures, 122, 367-375. doi:10.1016/j.compstruct.2014.11.062 DOI: https://doi.org/10.1016/j.compstruct.2014.11.062
  6. Capozucca, R., & Bossoletti, S. (2014). Static and free vibration analysis of RC beams with NSM CFRP rectangular rods. Composites Part B: Engineering, 67, 95-110. doi:10.1016/j.compositesb.2014.06.005 DOI: https://doi.org/10.1016/j.compositesb.2014.06.005
  7. Cepero-Mejías, F., Phadnis, V. A., Kerrigan, K., & Curiel-Sosa, J. L. (2021). A finite element assessment of chip formation mechanisms in the machining of CFRP laminates with different fibre orientations. Composite Structures, 268, Article 113966. doi:10.1016/j.compstruct.2021.113966 DOI: https://doi.org/10.1016/j.compstruct.2021.113966
  8. Fahem, N., Belaidi, I., Brahim, A. O., Noori, M., Khatir, S., & Wahab, M. A. (2023). Prediction of resisting force and tensile load reduction in GFRP composite materials using Artificial Neural Network-Enhanced Jaya Algorithm. Composite Structures, 304, Article 116326. doi:10.1016/j.compstruct.2022.116326 DOI: https://doi.org/10.1016/j.compstruct.2022.116326
  9. Ghandourah, E. I., Sangeetha, A., Shanmugan, S., Zayed, M. E., Moustafa, E. B., Tounsi, A., & Elsheikh, A. H. (2022). Performance assessment of a novel solar distiller with a double slope basin covered by coated wick with lanthanum cobalt oxide nanoparticles. Case Studies in Thermal Engineering, 32, Article 101859. doi:10.1016/j.csite.2022.101859 DOI: https://doi.org/10.1016/j.csite.2022.101859
  10. Gholami, J., Kamankesh, M. R., Mohammadi, S., Hosseinkhani, E., & Abdi, S. (2022). Powerful enhanced Jaya algorithm for efficiently optimizing numerical and engineering problems. Soft Computing, 26(11), 5315-5333. doi:10.1007/s00500-022-06909-z DOI: https://doi.org/10.1007/s00500-022-06909-z
  11. Hong, S. W., Ahn, S. S., Li, H., Kim, J. K., Ko, S. J., Koo, J. M., & Seok, C. S. (2013). Charpy impact fracture characteristics of CFRP composite materials according to variations of fiber array direction and temperature. International Journal of Precision Engineering and Manufacturing, 14(2), 253-258. doi:10.1007/s12541-013-0035-9 DOI: https://doi.org/10.1007/s12541-013-0035-9
  12. Humeau, C., Davies, P., & Jacquemin, F. (2018). An experimental study of water diffusion in carbon/epoxy composites under static tensile stress. Composites Part A: Applied Science and Manufacturing, 107, 94-104. doi:10.1016/j.compositesa.2017.12.016 DOI: https://doi.org/10.1016/j.compositesa.2017.12.016
  13. Khatir, A., Capozucca, R., Khatir, S., & Magagnini, E. (2022). Vibration-based crack prediction on a beam model using hybrid butterfly optimization algorithm with artificial neural network. Frontiers of Structural and Civil Engineering, 16(8), 976-989. doi:10.1007/s11709-022-0840-2 DOI: https://doi.org/10.1007/s11709-022-0840-2
  14. Khatir, A., Capozucca, R., Khatir, S., Magagnini, E., Benaissa, B., Le, C. T., & Wahab, M. A. (2023). A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam. Composite Structures, 311, Article 116803. doi:10.1016/j.compstruct.2023.116803 DOI: https://doi.org/10.1016/j.compstruct.2023.116803
  15. Khatir, S., Boutchicha, D., Le, C. T., Tran, H. N., Nguyen, N. T., & Abdel-Wahab, M. (2020). Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis. Theoretical and Applied Fracture Mechanics, 107, Article 102554. doi:10.1016/j.tafmec.2020.102554 DOI: https://doi.org/10.1016/j.tafmec.2020.102554
  16. Li, Q. M., Mines, R. A. W., & Birch, R. S. (2001). Static and dynamic behaviour of composite riveted joints in tension. International Journal of Mechanical Sciences, 43(7), 1591-1610. doi:10.1016/S0020-7403(00)00099-0 DOI: https://doi.org/10.1016/S0020-7403(00)00099-0
  17. Lopes, C. S., Seresta, O., Coquet, Y., Gürdal, Z., Camanho, P. P., & Thuis, B. (2009). Low-velocity impact damage on dispersed stacking sequence laminates. Part I: Experiments. Composites Science and Technology, 69(7), 926-936. doi:10.1016/j.compscitech.2009.02.009 DOI: https://doi.org/10.1016/j.compscitech.2009.02.009
  18. Malik, M. H., & Arif, A. F. M. (2013). ANN prediction model for composite plates against low velocity impact loads using finite element analysis. Composite Structures, 101, 290-300. doi:10.1016/j.compstruct.2013.02.020 DOI: https://doi.org/10.1016/j.compstruct.2013.02.020
  19. Mansouri, L., Djebbar, A., Khatir, S., & Wahab, M. A. (2019). Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites. Composite Structures, 207, 816-825. doi:10.1016/j.compstruct.2018.09.067 DOI: https://doi.org/10.1016/j.compstruct.2018.09.067
  20. Mechakra, H., Nour, A., Lecheb, S., & Chellil, A. (2015). Mechanical characterizations of composite material with short Alfa fibers reinforcement. Composite Structures, 124, 152-162. doi:10.1016/j.compstruct.2015.01.010 DOI: https://doi.org/10.1016/j.compstruct.2015.01.010
  21. Migallón, H., Jimeno-Morenilla, A., Sánchez-Romero, J. L., Rico, H., & Rao, R. V. (2019). Multipopulation-based multi-level parallel enhanced Jaya algorithms. The Journal of Supercomputing, 75(3), 1697-1716. doi:10.1007/s11227-019-02759-z DOI: https://doi.org/10.1007/s11227-019-02759-z
  22. Ouladbrahim, A., Belaidi, I., Khatir, S., Magagnini, E., Capozucca, R., & Wahab, M. A. (2022). Experimental crack identification of API X70 steel pipeline using improved Artificial Neural Networks based on Whale Optimization Algorithm. Mechanics of Materials, 166, Article 104200. doi:10.1016/j.mechmat.2021.104200 DOI: https://doi.org/10.1016/j.mechmat.2021.104200
  23. Park, H.-J. (2001). Effects of stacking sequence and clamping force on the bearing strengths of mechanically fastened joints in composite laminates. Composite Structures, 53(2), 213-221. doi:10.1016/S0263-8223(01)00005-8 DOI: https://doi.org/10.1016/S0263-8223(01)00005-8
  24. Samyal, R., Singh, S., & Bagha, A. K. (2019). Modal analysis of composite panel at different fiber orientations. Materials Today: Proceedings, 16, 477-480. doi:10.1016/j.matpr.2019.05.118 DOI: https://doi.org/10.1016/j.matpr.2019.05.118
  25. Zara, A., Belaidi, I., Khatir, S., Brahim, A. O., Boutchicha, D., & Wahab, M. A. (2023). Damage detection in GFRP composite structures by improved artificial neural network using new optimization techniques. Composite Structures, 305, Article 116475. DOI: https://doi.org/10.1016/j.compstruct.2022.116475
  26. Zenzen, R., Khatir, S., Belaidi, I., Le, C. T., & Wahab, M. A. (2020). A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures. Composite Structures, 248, Article 112497. doi:10.1016/j.compstruct.2020.112497 DOI: https://doi.org/10.1016/j.compstruct.2020.112497