Metaheuristic optimization algorithms: An overview
##plugins.themes.academic_pro.article.main##
Abstract
Metaheuristic optimization algorithms are versatile and adaptable tools that effectively solve various complex optimization problems. These algorithms are not restricted to specific types of problems or gradients. They can explore globally and handle multi-objective optimization efficiently. They strike a balance between exploration and exploitation, contributing to advancements in optimization. However, it’s important to note their limitations, including the lack of a guaranteed global optimum, varying convergence rates, and their somewhat opaque functioning. In contrast, metaphor-based optimization algorithms, while intuitively appealing, have faced controversy due to potential oversimplification and unrealistic expectations. Despite these considerations, metaheuristic algorithms continue to be widely used for tackling complex problems. This research paper aims to explore the fundamental components and concepts that underlie optimization algorithms, focusing on the use of search references and the delicate balance between exploration and exploitation. Visual representations of the search behavior of selected metaheuristic algorithms will also be provided.
Keywords
exploration, exploitation, optimization, metaheuristic, review

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic algorithms:
A comprehensive review. Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, 185-231. DOI: https://doi.org/10.1016/B978-0-12-813314-9.00010-4 - Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, Article 113609. DOI: https://doi.org/10.1016/j.cma.2020.113609
- Adam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No free lunch theorem: A review. Approximation and Optimization: Algorithms, Complexity and Applications, 57-82. DOI: https://doi.org/10.1007/978-3-030-12767-1_5
- Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019). Ieee Access, 9, 26766-26791. DOI: https://doi.org/10.1109/ACCESS.2021.3056407
- Akay, B., Karaboga, D., & Akay, R. (2022). A comprehensive survey on optimizing deep learning models by metaheuristics. Artificial Intelligence Review, 1-66. DOI: https://doi.org/10.1007/s10462-021-09992-0
- Al Ali, M., Shimoda, M., Benaissa, B., & Kobayashi, M. (2023). Non-parametric optimization for lightweight and high heat conductive structures under convection using metaheuristic structure binary-distribution method. Applied Thermal Engineering, Article 121124. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121124
- Al Thobiani, F., Khatir, S., Benaissa, B., Ghandourah, E., Mirjalili, S., & Wahab, M. A. (2022). A hybrid PSO and Grey Wolf Optimization algorithm for static and dynamic crack identification. Theoretical and Applied Fracture Mechanics, 118, Article 103213. DOI: https://doi.org/10.1016/j.tafmec.2021.103213
- Alia, O. M., & Mandava, R. (2011). The variants of the harmony search algorithm: An overview. Artificial Intelligence Review, 36, 49-68. DOI: https://doi.org/10.1007/s10462-010-9201-y
- Alorf, A. (2023). A survey of recently developed metaheuristics and their comparative analysis. Engineering Applications of Artificial Intelligence, 117, Article 105622. DOI: https://doi.org/10.1016/j.engappai.2022.105622
- Amoura, N., Benaissa, B., Al Ali, M., & Khatir, S. (2023). Deep neural network and YUKI algorithm for inner damage characterization based on elastic boundary displacement BT - Proceedings of the International Conference of Steel and Composite for Engineering Structures. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-24041-6_18
- Aranha, C., Camacho Villalón, C. L., Campelo, F., Dorigo, M., Ruiz, R., Sevaux, M., … Stützle, T. (2022). Metaphor-based metaheuristics, a call for action: The elephant in the room. Swarm Intelligence, 16(1), 1-6. DOI: https://doi.org/10.1007/s11721-021-00202-9
- Azevedo, F., Vale, Z. A., Oliveira, P. B. M., & Khodr, H. M. (2010). A long-term risk management tool for electricity markets using swarm intelligence. Electric Power Systems Research, 80(4), 380-389. DOI: https://doi.org/10.1016/j.epsr.2009.10.002
- Bai, J., Li, Y., Zheng, M., Khatir, S., Benaisa, B., Abualigah, L., & Wahab, M. A. (2023). A sinh cosh optimizer. Knowledge-Based Systems, Article 111081. DOI: https://doi.org/10.1016/j.knosys.2023.111081
- Banks, A., Vincent, J., & Anyakoha, C. (2007). A review of particle swarm optimization. Part I: Background and development. Natural Computing, 6, 467-484. DOI: https://doi.org/10.1007/s11047-007-9049-5
- Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 1, fundamentals. University Computing, 15(2), 56-69.
- Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-heuristic algorithms. International Journal of Advances in Soft Computing and its Applications, 5(1), 1-35.
- Benaissa, B., Hocine, N. A., Khatir, S., Riahi, M. K., & Mirjalili, S. (2021). YUKI Algorithm and POD-RBF for elastostatic and dynamic crack identification. Journal of Computational Science, 55, Article 101451. DOI: https://doi.org/10.1016/j.jocs.2021.101451
- Benaissa, B., Kobayashi, M., Kinoshita, K., & Takenouchi, H. (2023). A novel approach for individual design perception based on fuzzy inference system training with YUKI algorithm. Axioms, 12(10), Article 904. DOI: https://doi.org/10.3390/axioms12100904
- Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical Science, 8(1), 10-15. DOI: https://doi.org/10.1214/ss/1177011077
- Birattari, M., & Kacprzyk, J. (2009). Tuning metaheuristics: A machine learning perspective (Vol. 197). Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-3-642-00483-4_7
- Blackwell, T., & Kennedy, J. (2018). Impact of communication topology in particle swarm optimization. IEEE Transactions on Evolutionary Computation, 23(4), 689-702. DOI: https://doi.org/10.1109/TEVC.2018.2880894
- Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268-308. DOI: https://doi.org/10.1145/937503.937505
- Bolufé-Röhler, A., & Chen, S. (2020). A multi-population exploration-only exploitation-only hybrid on CEC-2020 single objective bound constrained problems. 2020 IEEE Congress on Evolutionary Computation (CEC), 1-8. DOI: https://doi.org/10.1109/CEC48606.2020.9185530
- Busetti, F. (2003). Simulated annealing overview. Retrieved October 10, 2022, from www.Geocities.Com/Francorbusetti/Saweb.Pdf,4
- Camacho-Villalón, C. L., Dorigo, M., & Stützle, T. (2022). An analysis of why cuckoo search does not bring any novel ideas to optimization. Computers & Operations Research, 142, Article 105747. DOI: https://doi.org/10.1016/j.cor.2022.105747
- Camacho‐Villalón, C. L., Dorigo, M., & Stützle, T. (2023). Exposing the grey wolf, moth‐flame, whale, firefly, bat, and antlion algorithms: Six misleading optimization techniques inspired by bestial metaphors. International Transactions in Operational Research, 30(6), 2945-2971. DOI: https://doi.org/10.1111/itor.13176
- Castillo, J. C., & Segura, C. (2020). Differential evolution with enhanced diversity maintenance. Optimization Letters, 14, 1471-1490. DOI: https://doi.org/10.1007/s11590-019-01454-5
- Chakraborty, S., Sharma, S., Saha, A. K., & Chakraborty, S. (2021). SHADE-WOA: A metaheuristic algorithm for global optimization. Applied Soft Computing, 113, Article 107866. DOI: https://doi.org/10.1016/j.asoc.2021.107866
- Chica, M., Pérez, A. A. J., Cordon, O., & Kelton, D. (2017). Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation. Retrieved October 10, 2022, from http://dx.doi.org/10.2139/ssrn.2919208 DOI: https://doi.org/10.2139/ssrn.2919208
- Chopard, B., & Tomassini, M. (2018). Performance and limitations of metaheuristics. An Introduction to Metaheuristics for Optimization, 191-203. DOI: https://doi.org/10.1007/978-3-319-93073-2_11
- Cuevas, E., Diaz, P., Camarena, O., Cuevas, E., Diaz, P., & Camarena, O. (2021). Experimental analysis between exploration and exploitation. Metaheuristic Computation: A Performance Perspective, 249-269. DOI: https://doi.org/10.1007/978-3-030-58100-8_10
- Dalla, C. E. R., da Silva, W. B., Dutra, J. C. S., & Colaço, M. J. (2021). A comparative study of gradient-based and meta heuristic optimization methods using Griewank benchmark function. Brazilian Journal of Development, 7(6), 55341-55350. DOI: https://doi.org/10.34117/bjdv7n6-102
- Dang, N. R., Dardinier, T., Doerr, B., Izacard, G., & Nogneng, D. (2018). A new analysis method for evolutionary optimization of dynamic and noisy objective functions. Proceedings of the Genetic and Evolutionary Computation Conference, 1467-1474. DOI: https://doi.org/10.1145/3205455.3205563
- Daoud, M. S., Shehab, M., Al-Mimi, H. M., Abualigah, L., Zitar, R. A., & Shambour, M. K. Y. (2023). Gradient-Based Optimizer (GBO): A review, theory, variants, and applications. Archives of Computational Methods in Engineering, 30(4), 2431-2449. DOI: https://doi.org/10.1007/s11831-022-09872-y
- Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution - An updated survey. Swarm and Evolutionary Computation, 27, 1-30. DOI: https://doi.org/10.1016/j.swevo.2016.01.004
- Dehghani, M., Montazeri, Z., Trojovská, E., & Trojovský, P. (2023). Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 259, Article 110011. DOI: https://doi.org/10.1016/j.knosys.2022.110011
- Doğan, B., & Ölmez, T. (2015). A new metaheuristic for numerical function optimization: Vortex Search algorithm. Information Sciences, 293, 125-145. DOI: https://doi.org/10.1016/j.ins.2014.08.053
- Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 137, Article 106040. DOI: https://doi.org/10.1016/j.cie.2019.106040
- Dong, X., & Liu, X. (2021). Multi-objective optimization of heat transfer in microchannel for non-Newtonian fluid. Chemical Engineering Journal, 412, Article 128594. DOI: https://doi.org/10.1016/j.cej.2021.128594
- Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2/3), 243-278. DOI: https://doi.org/10.1016/j.tcs.2005.05.020
- Dorigo, M., & Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, applications, and advances. Handbook of Metaheuristics, 250-285. DOI: https://doi.org/10.1007/0-306-48056-5_9
- Dorigo, M., & Stützle, T. (2019). Ant colony optimization: Overview and recent advances. Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-3-319-91086-4_10
- Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39. DOI: https://doi.org/10.1109/CI-M.2006.248054
- Du, K.-L., & Swamy, M. N. S. (2016). Search and optimization by metaheuristics. Techniques and Algorithms Inspired by Nature, 1-10. DOI: https://doi.org/10.1007/978-3-319-41192-7
- Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31. DOI: https://doi.org/10.1016/j.swevo.2011.02.001
- Engelbrecht, A. P. (2013). Particle swarm optimization: Global best or local best? 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, 124-135. DOI: https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31
- Gallagher, M. (2016). Towards improved benchmarking of black-box optimization algorithms using clustering problems. Soft Computing, 20, 3835-3849. DOI: https://doi.org/10.1007/s00500-016-2094-1
- Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. DOI: https://doi.org/10.1016/j.cnsns.2012.05.010
- Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29, 17-35. DOI: https://doi.org/10.1007/s00366-011-0241-y
- Gandomi, A. H., Yang, X.-S., Talatahari, S., & Alavi, A. H. (2013). Metaheuristic algorithms in modeling and optimization. Metaheuristic Applications in Structures and Infrastructures, 1, 1-24. DOI: https://doi.org/10.1016/B978-0-12-398364-0.00001-2
- Gavrilas, M. (2010). Heuristic and metaheuristic optimization techniques with application to power systems. Proceedings of the 12th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering, 95-103.
- Geem, Z. W. (2010). Recent advances in harmony search algorithm. doi:10.1007/978-3-642-04317-8 DOI: https://doi.org/10.1007/978-3-642-04317-8
- Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60-68. DOI: https://doi.org/10.1177/003754970107600201
- Gendreau, M., & Potvin, J.-Y. (2005). Tabu search. Search methodologies: Introductory tutorials in optimization and decision support techniques, 165-186. DOI: https://doi.org/10.1007/0-387-28356-0_6
- Ghandourah, E., Khatir, S., Banoqitah, E. M., Alhawsawi, A. M., Benaissa, B., & Wahab, M. A. (2023). Enhanced ANN predictive model for composite pipes subjected to low-velocity impact loads. Buildings, 13(4), Article 973. DOI: https://doi.org/10.3390/buildings13040973
- Griffis, S. E., Bell, J. E., & Closs, D. J. (2012). Metaheuristics in logistics and supply chain management. Journal of Business Logistics, 33(2), 90-106. DOI: https://doi.org/10.1111/j.0000-0000.2012.01042.x
- Gutjahr, W. J. (2009). Convergence analysis of metaheuristics. In Matheuristics: Hybridizing metaheuristics and mathematical programming (pp. 159-187). Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-1-4419-1306-7_6
- Halim, A. H., Ismail, I., & Das, S. (2021). Performance assessment of the metaheuristic optimization algorithms: An exhaustive review. Artificial Intelligence Review, 54, 2323-2409. DOI: https://doi.org/10.1007/s10462-020-09906-6
- Hertz, A., Taillard, E., & De Werra, D. (1995). A tutorial on tabu search. Proceeding of Giornate Di Lavoro AIRO, 95, 13-24.
- Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73. DOI: https://doi.org/10.1038/scientificamerican0792-66
- Huang, C., Li, Y., & Yao, X. (2019). A survey of automatic parameter tuning methods for metaheuristics. IEEE Transactions on Evolutionary Computation, 24(2), 201-216. DOI: https://doi.org/10.1109/TEVC.2019.2921598
- Hussain, K., Salleh, M. N. M., Cheng, S., & Naseem, R. (2017). Common benchmark functions for metaheuristic evaluation: A review. JOIV: International Journal on Informatics Visualization, 1(4/2), 218-223. DOI: https://doi.org/10.30630/joiv.1.4-2.65
- Hussain, K., Salleh, M. N. M., Cheng, S., & Shi, Y. (2019). On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Computing and Applications, 31, 7665-7683. DOI: https://doi.org/10.1007/s00521-018-3592-0
- Issa, M., & Mostafa, Y. (2022). Gradient-based optimizer for structural optimization problems. In Integrating meta-heuristics and machine learning for real-world optimization problems (pp. 461-480). Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-3-030-99079-4_18
- Jaszkiewicz, A. (2001). Multiple objective metaheuristic algorithms for combinatorial optimization. Poland: Politechniki PoznaĘąnskiej.
- Karaboga, D. (2010). Artificial bee colony algorithm. Scholarpedia, 5(3), Article 6915. DOI: https://doi.org/10.4249/scholarpedia.6915
- Kareem, S. W. (2022). A nature-inspired metaheuristic optimization algorithm based on Crocodiles Hunting Search (CHS). International Journal of Swarm Intelligence Research (IJSIR), 13(1), 1-23. DOI: https://doi.org/10.4018/IJSIR.302616
- Kaveh, A. (2014). Advances in metaheuristic algorithms for optimal design of structures. Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-3-319-05549-7
- Kaveh, A. (2017). Applications of metaheuristic optimization algorithms in civil engineering. Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-3-319-48012-1
- Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948. DOI: https://doi.org/10.1109/ICNN.1995.488968
- Khanduja, N., & Bhushan, B. (2021). Recent advances and application of metaheuristic algorithms: A survey (2014-2020). In Metaheuristic and evolutionary computation: Algorithms and applications (pp. 207-228). DOI: https://doi.org/10.1007/978-981-15-7571-6_10
- Khatir, A., Capozucca, R., Khatir, S., Magagnini, E., Benaissa, B., Le, C. T., & Wahab, M. A. (2023). A new hybrid PSO-YUKI for double crack identification in CFRP cantilever beam. Composite Structures, Article 116803. DOI: https://doi.org/10.1016/j.compstruct.2023.116803
- Kobayashi, M. (2019). Multi-objective aesthetic design optimization for minimizing the effect of variation in customer Kansei. Computer-Aided Design and Applications, 17(4), 690-698. DOI: https://doi.org/10.14733/cadaps.2020.690-698
- Kobayashi, M. (2020). Multi-objective aesthetic design optimization for minimizing the effect of variation in customer Kansei. Abingdon, UK: Taylor and Francis. DOI: https://doi.org/10.14733/cadconfP.2019.403-407
- Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimisation: A new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93-119. DOI: https://doi.org/10.1504/IJCISTUDIES.2009.025340
- Kuo, S.-Y., & Chou, Y.-H. (2021). Building intelligent moving average-based stock trading system using metaheuristic algorithms. IEEE Access, 9, 140383-140396. DOI: https://doi.org/10.1109/ACCESS.2021.3119041
- Kuyu, Y. Ç., & Vatansever, F. (2021). Advanced metaheuristic algorithms on solving multimodal functions: Experimental analyses and performance evaluations. Archives of Computational Methods in Engineering, 1-13. DOI: https://doi.org/10.1007/s11831-021-09555-0
- Lampinen, J. A., Price, K. V., & Storn, R. M. (2005). Differential evolution. Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-3-540-39930-8_6
- Le, M. H., To, S. T., Theraulaz, G., Wahab, M. A., & Le, C. T. (2023). Termite life cycle optimizer. Expert Systems with Applications, 213, Article 119211. DOI: https://doi.org/10.1016/j.eswa.2022.119211
- Lessmann, S., Caserta, M., & Arango, I. M. (2011). Tuning metaheuristics: A data mining based approach for particle swarm optimization. Expert Systems with Applications, 38(10), 12826-12838. DOI: https://doi.org/10.1016/j.eswa.2011.04.075
- Mirjalili, S. (2016a). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27, 1053-1073. DOI: https://doi.org/10.1007/s00521-015-1920-1
- Mirjalili, S. (2016b). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133. DOI: https://doi.org/10.1016/j.knosys.2015.12.022
- Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007
- Morales-Castañeda, B., Zaldivar, D., Cuevas, E., Fausto, F., & Rodríguez, A. (2020). A better balance in metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation, 54, Article 100671. DOI: https://doi.org/10.1016/j.swevo.2020.100671
- Mucherino, A., & Seref, O. (2007). Monkey search: A novel metaheuristic search for global optimization. AIP Conference Proceedings, 953(1), 162-173. DOI: https://doi.org/10.1063/1.2817338
- Nanda, S. J., & Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation, 16, 1-18. DOI: https://doi.org/10.1016/j.swevo.2013.11.003
- Naruei, I., Keynia, F., & Molahosseini, A. S. (2022). Hunter-prey optimization: Algorithm and applications. Soft Computing, 26(3), 1279-1314. DOI: https://doi.org/10.1007/s00500-021-06401-0
- Odili, J. B. (2018). The dawn of metaheuristic algorithms. International Journal of Software Engineering and Computer Systems, 4(2), 49-61. DOI: https://doi.org/10.15282/ijsecs.4.2.2018.4.0048
- Oftadeh, R., Mahjoob, M. J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Computers & Mathematics with Applications, 60(7), 2087-2098. DOI: https://doi.org/10.1016/j.camwa.2010.07.049
- Omidvar, M. N., Li, X., & Yao, X. (2021). A review of population-based metaheuristics for large-scale black-box global optimization - Part I. IEEE Transactions on Evolutionary Computation, 26(5), 802-822. DOI: https://doi.org/10.1109/TEVC.2021.3130838
- Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A. J., Molina, D., LaTorre, A., … Herrera, F. (2021). A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm and Evolutionary Computation, 64, Article 100888. DOI: https://doi.org/10.1016/j.swevo.2021.100888
- Parouha, R. P., & Verma, P. (2021). State-of-the-art reviews of meta-heuristic algorithms with their novel proposal for unconstrained optimization and applications. Archives of Computational Methods in Engineering, 28, 4049-4115. DOI: https://doi.org/10.1007/s11831-021-09532-7
- Peres, F., & Castelli, M. (2021). Combinatorial optimization problems and metaheuristics: Review, challenges, design, and development. Applied Sciences, 11(14), Article 6449. DOI: https://doi.org/10.3390/app11146449
- Pirim, H., Eksioglu, B., & Bayraktar, E. (2008). Tabu search: A comparative study. In W. Jaziri (Ed.), Tabu search. doi:10.5772/5637 DOI: https://doi.org/10.5772/5637
- Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: A practical approach to global optimization. Heidelberg, Berlin: Springer Science & Business Media.
- Rahmani, M., Eraqi, M. K., & Nikoomaram, H. (2019). Portfolio optimization by means of Meta heuristic algorithms. Advances in Mathematical Finance and Applications, 4(4), 83-97.
- Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34. DOI: https://doi.org/10.5267/j.ijiec.2015.8.004
- Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization:
A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. DOI: https://doi.org/10.1016/j.cad.2010.12.015 - Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232-2248. DOI: https://doi.org/10.1016/j.ins.2009.03.004
- Ribeiro, C. C., Hansen, P., Maniezzo, V., & Carbonaro, A. (2002). Ant colony optimization:
An overview. Essays and Surveys in Metaheuristics, 469-492. DOI: https://doi.org/10.1007/978-1-4615-1507-4_21 - Ruder, S. (2016). An overview of gradient descent optimization algorithms. Retrieved October 10, 2022, from https://arxiv.org/pdf/1609.04747.pdf
- Sahali, M. A., Aini, A., Bouzit, L., Himed, L., & Benaissa, B. (2023). Experimental modeling and multi-objective optimization of friction stir welding parameters of AA 3004 aluminum alloy. The International Journal of Advanced Manufacturing Technology, 124(3), 1229-1244. DOI: https://doi.org/10.1007/s00170-022-10349-2
- Sala, R., & Müller, R. (2020). Benchmarking for metaheuristic black-box optimization: Perspectives and open challenges. 2020 IEEE Congress on Evolutionary Computation (CEC), 1-8. DOI: https://doi.org/10.1109/CEC48606.2020.9185724
- Shirazi, M. I., Khatir, S., Benaissa, B., Mirjalili, S., & Wahab, M. A. (2023). Damage assessment in laminated composite plates using modal Strain Energy and YUKI-ANN algorithm. Composite Structures, 303, Article 116272. doi:10.1016/j.compstruct.2022.116272 DOI: https://doi.org/10.1016/j.compstruct.2022.116272
- Singh, G., & Singh, A. (2014). Comparative study of krill herd, firefly and cuckoo search algorithms for unimodal and multimodal optimization. International Journal of Intelligent Systems and Applications in Engineering, 2(3), 26-37. DOI: https://doi.org/10.18201/ijisae.31981
- Singh, P., & Choudhary, S. K. (2021). Introduction: Optimization and metaheuristics algorithms. Metaheuristic and Evolutionary Computation: Algorithms and Applications, 3-33. DOI: https://doi.org/10.1007/978-981-15-7571-6_1
- Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. Heidelberg, Berlin: Springer.
- Soler-Dominguez, A., Juan, A. A., & Kizys, R. (2017). A survey on financial applications of metaheuristics. ACM Computing Surveys (CSUR), 50(1), 1-23. DOI: https://doi.org/10.1145/3054133
- Sörensen, K. (2015). Metaheuristics - The metaphor exposed. International Transactions in Operational Research, 22(1), 3-18. DOI: https://doi.org/10.1111/itor.12001
- Syafruddin, W. A., Köppen, M., & Benaissa, B. (2018). Does the Jaya algorithm really need no parameters? 10th International Joint Conference on Computational Intelligence, 264-268. DOI: https://doi.org/10.5220/0006960702640268
- Talbi, E., Basseur, M., Nebro, A. J., & Alba, E. (2012). Multi‐objective optimization using metaheuristics: Non‐standard algorithms. International Transactions in Operational Research, 19(1/2), 283-305. DOI: https://doi.org/10.1111/j.1475-3995.2011.00808.x
- Tarantilis, C. D., Ioannou, G., Kiranoudis, C. T., & Prastacos, G. P. (2005). Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm. Journal of the Operational Research Society, 56, 588-596. DOI: https://doi.org/10.1057/palgrave.jors.2601848
- Tilahun, S. L., & Ong, H. C. (2015). Prey-predator algorithm: A new metaheuristic algorithm for optimization problems. International Journal of Information Technology & Decision Making, 14(6), 1331-1352. DOI: https://doi.org/10.1142/S021962201450031X
- To, S. T., Le, H. M., Wahab, M. A., & Le, C. T. (2022). An efficient planet optimization algorithm for solving engineering problems. Scientific Reports, 12(1), Article 8362. DOI: https://doi.org/10.1038/s41598-022-12030-w
- Tovey, C. A. (2018). Nature-inspired heuristics: Overview and critique. Recent Advances in Optimization and Modeling of Contemporary Problems, 158-192. DOI: https://doi.org/10.1287/educ.2018.0187
- Van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing. Heidelberg, Berlin: Springer. DOI: https://doi.org/10.1007/978-94-015-7744-1_2
- Velasco, L., Guerrero, H., & Hospitaler, A. (2023). A literature review and critical analysis of metaheuristics recently developed. Archives of Computational Methods in Engineering, 1-22. DOI: https://doi.org/10.1007/s11831-023-09975-0
- Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: An overview. Soft Computing, 22, 387-408. DOI: https://doi.org/10.1007/s00500-016-2474-6
- Wong, W. K., & Ming, C. I. (2019). A review on metaheuristic algorithms: Recent trends, benchmarking and applications. 2019 7th International Conference on Smart Computing & Communications (ICSCC), 1-5. DOI: https://doi.org/10.1109/ICSCC.2019.8843624
- Xu, J., & Zhang, J. (2014). Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis. Proceedings of the 33rd Chinese Control Conference, 8633-8638. DOI: https://doi.org/10.1109/ChiCC.2014.6896450
- Yang, X., & Gandomi, A. H. (2012). Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 29(5), 464-483. DOI: https://doi.org/10.1108/02644401211235834
- Yang, X.-S. (2009). Harmony search as a metaheuristic algorithm. Music-Inspired Harmony Search Algorithm: Theory and Applications, 1-14. DOI: https://doi.org/10.1007/978-3-642-00185-7_1
- Yang, X.-S. (2010). Engineering optimization: An introduction with metaheuristic applications. Hoboken, NJ: John Wiley & Sons. DOI: https://doi.org/10.1002/9780470640425
- Yang, X.-S. (2011a). Metaheuristic optimization: Algorithm analysis and open problems. International Symposium on Experimental Algorithms, 21-32. DOI: https://doi.org/10.1007/978-3-642-20662-7_2
- Yang, X.-S. (2011b). Metaheuristic optimization. Scholarpedia, 6(8), Article 11472. DOI: https://doi.org/10.4249/scholarpedia.11472
- Yang, X.-S., & Slowik, A. (2020). Firefly algorithm. In Swarm intelligence algorithms (pp. 163-174). Boca Raton, FL: CRC Press. DOI: https://doi.org/10.1201/9780429422614-13
- Yazdani, S., Nezamabadi-Pour, H., & Kamyab, S. (2014). A gravitational search algorithm for multimodal optimization. Swarm and Evolutionary Computation, 14, 1-14. DOI: https://doi.org/10.1016/j.swevo.2013.08.001
- Zhang, J. (2019). Gradient descent based optimization algorithms for deep learning models training. Retrieved October 10, 2022, from https://arxiv.org/pdf/1903.03614.pdf
- Zitouni, F., Harous, S., & Maamri, R. (2020). The solar system algorithm: A novel metaheuristic method for global optimization. IEEE Access, 9, 4542-4565. DOI: https://doi.org/10.1109/ACCESS.2020.3047912
- Zitouni, F., Harous, S., Belkeram, A., & Hammou, L. E. B. (2022). The archerfish hunting optimizer: A novel metaheuristic algorithm for global optimization. Arabian Journal for Science and Engineering, 47(2), 2513-2553. DOI: https://doi.org/10.1007/s13369-021-06208-z