In-plane and out-of-plane bending vibration analysis of the laminated composite beams using higher-order theories

##plugins.themes.academic_pro.article.main##

Ramazan-Ali Jafari-Talookolaei - ramazanali@gmail.com

Abstract

In this paper, relatively new higher-order shear deformation theories are presented for a thorough analysis of the in-plane and out-of-plane vibrational characteristics of laminated composite beams. Through the introduction of new displacement fields and the consideration of rotary inertia and Poisson’s effect, the kinetic and potential energies of the beams have been derived. This formulation, displaying significant generality, accommodates arbitrary stacking sequences. Utilizing the finite element method, a new element has been presented for calculating the beam’s vibrational characteristics. Featuring three nodes, each with seven degrees of freedom, this higher-order element provides a detailed representation of complex behaviors. Mass and stiffness matrices were derived using the energy method, and boundary conditions were applied through the penalty approach. The results exhibit a good degree of consistency and alignment with those obtained from the 3D commercial software ANSYS, validating the accuracy and reliability of the proposed methodology for structural analysis. This comprehensive approach contributes to advancing the understanding and modeling of laminated composite beams in diverse engineering applications. The effects of different parameters on the in-plane and out-of-plane vibration analysis of laminated composite beams have been investigated in detail.

Keywords

free vibration, higher-order theories, in-plane, laminated composite beam, out-of-plane

How to Cite
Jafari-Talookolaei, R.-A. (2024). In-plane and out-of-plane bending vibration analysis of the laminated composite beams using higher-order theories. HCMCOU Journal of Science – Advances in Computational Structures, 14(2), 3–22. https://doi.org/10.46223/HCMCOUJS.acs.en.14.2.55.2024

References

  1. Alazwari, M. A., Mohamed, S. A., & Eltaher, M. A. (2022). Vibration analysis of laminated composite higher order beams under varying axial loads. Ocean Engineering, 252, Article 111203.
  2. Ambartsumyan, S. (1958). On theory of bending plates. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, 5(5), 69-77.
  3. Aydogdu, M. (2006). Free vibration analysis of angle-ply laminated beams with general boundary conditions. Journal of Reinforced Plastics and Composites, 25(15), 1571-1583.
  4. Belabed, Z., Tounsi, A., Al-Osta, M. A., Tounsi, A., & Le, M. H. (2024). On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler Pasternak foundations via finite element computation. Geomechanics and Engineering, 36(2), 183-204.
  5. Belabed, Z., Tounsi, A., Bousahla, A. A., Tounsi, A., Bourada, M., & Al-Osta M.A. (2024). Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model. Structural Engineering and Mechanics, 90(3), 233-252.
  6. Boukhalfa, A., Hadjoui, A., & Cherif, S. M. H. (2008). Free vibration analysis of a rotating composite shaft using the p-version of the finite element method. International Journal of Rotating Machinery, Article 752062.
  7. Bui, B. X., Nguyen, K. T., Nguyen, D. N., & Vo, P. T. (2022). A general higher-order shear deformation theory for buckling and free vibration analysis of laminated thin-walled composite I-beams. Composite Structures, 295, Article 115775.
  8. Bui, C. M., Tounsi, A., Do, T. V., Nguyen, V. T. H., & Phung, M. V. (2024). Finite element modelling for the static bending response of rotating FG-GPLRC beams with geometrical imperfections in thermal mediums. Computers and Concrete, 33(1), 91-102.
  9. Chandiramani, N. K., Librescu, L., & Shete, C. D. (2002). On the free-vibration of rotating composite beams using a higher-order shear formulation. Aerospace Science and Technology, 6(8), 545-561.
  10. Chandrashekhara, K., Krishnamurthy, K., & Roy, S. (1990). Free vibration of composite beams including rotary inertia and shear deformation. Composite Structures, 14(4), 269-279.
  11. Dao, T. M., Do, T. V., Nguyen, V. T. H., Tounsi, A., Phung, M. V., & Dao, M. N. (2023). Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account. Computers and Concrete, 32(6), 553-565.
  12. Groh, R. M. J., & Weaver, P. M. (2015). Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells. Composite Structures, 120, 231-245.
  13. Hijmissen, J. W., & Van Horssen, W. T. (2008). On transverse vibrations of a vertical Timoshenko beam. Journal of Sound and Vibration, 314(1/2), 161-179.
  14. Jafari-Talookolaei, R.-A., Abedi, M., & Attar, M. (2017). In-plane and out-of-plane vibration modes of laminated composite beams with arbitrary lay-ups. Aerospace Science and Technology, 66, 366-379.
  15. Jafari-Talookolaei, R.-A., Abedi, M., Kargarnovin, M. H., & Ahmadian, M. T. (2012). An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia. International Journal of Mechanical Sciences, 65(1), 97-104.
  16. Jafari-Talookolaei, R.-A., Attar, M., Valvo, P. S., Lotfinejad-Jalali, F., Shirsavar, S. F. G., & Saadatmorad M. (2022). Flapwise and chordwise free vibration analysis of a rotating laminated composite beam. Composite Structures, 292, Article 115694.
  17. Kant, T., & Gupta, A. (1988). A finite element model for a higher-order shear-deformable beam theory. Journal of Sound and Vibration, 125(2), 193-202.
  18. Kant, T., Marur, S. R., & Rao, G. S. (1998). Analytical solution to the dynamic analysis of laminated beams using higher order refined theory. Composite Structures, 40(1), 1-9.
  19. Karama, M., Afaq, K. S., & Mistou, S. (2003). Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures, 40(6), 1525-1546.
  20. Kim, S., Kim, K., Ri, M., Paek, Y., & Kim, C. (2021). A semi-analytical method for forced vibration analysis of cracked laminated composite beam with general boundary condition. Journal of Ocean Engineering and Science, 6(1), 40-53.
  21. Krishnaswamy, S., Chandrashekhara, K., & Wu, W. Z. B. (1992). Analytical solutions to vibration of generally layered composite beams. Journal of Sound and Vibration, 159(l), 85-99.
  22. Lakhdar, Z., Chorfi, S. M., Belalia, S. A., Khedher, K. M., Alluqmani, A. E., Tounsi, A., & Yaylacı, M. (2024). Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method. Acta Mechanica, 235, 3657-3686.
  23. Matsunaga, H. (2001). Vibration and buckling of multilayered composite beams according to higher order deformation theories. Journal of Sound and Vibration, 246(1), 47-62.
  24. Matsunaga, H. (2002). Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories. Composite Structures, 55(1), 105-114.
  25. Meftah, S. A., Aldosari, S. M., Tounsi, A., Le, C. T., Khedher, K. M., & Alluqmani, A. E. (2024). Simplified homogenization technique for nonlinear finite element analysis of in-plane loaded masonry walls. Engineering Structures, 306, Article 117822.
  26. Mesbah, A., Belabed Z., Amara, K., Tounsi, A., Bousahla, A. A., & Bourada, F. (2023). Formulation and evaluation a finite element model for free vibration and buckling behaviours of Functionally Graded Porous (FGP) beams. Structural Engineering and Mechanics, 86(3), 291-309.
  27. Nguyen, K. T., Nguyen, D. B., Vo, P. T., & Thai, T. H. (2020). A novel unified model for laminated composite beams. Composite Structures, 238, Article 111943.
  28. Pavan, G. S., Muppidi, H., & Dixit, J. (2022). Static, free vibrational and buckling analysis of laminated composite beams using isogeometric collocation method. European Journal of Mechanics - A/Solids, 96, Article 104758.
  29. Pham, V. V., Nguyen, C. V., & Tounsi, A. (2022). Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. European Journal of Mechanics - A/Solids, 96, Article 104743.
  30. Reddy, J. N. (1986). A refined shear deformation theory for the analysis of laminated plates (Contractor Report 3955). Retrieved March 28, 2024, from https://ntrs.nasa.gov/api/citations/19860007138/ downloads/19860007138.pdf
  31. Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: Theory and analysis. Boca Raton, FL: CRC Press.
  32. Ren, S., Cheng, C., Meng, Z., Yu, B., & Zhao, G. (2021). A new general third-order zigzag model for asymmetric and symmetric laminated composite beams. Composite Structures, 260, Article 113523.
  33. Seraj, S., & Ganesan, R. (2018). Dynamic instability of rotating doubly-tapered laminated composite beams under periodic rotational speeds. Composite Structures, 200, 711-728.
  34. So, S.-R., Yun, H., Ri, Y., Ryongsik, O., & Yun, Y. (2021). Haar wavelet discretization method for free vibration study of laminated composite beam under generalized boundary conditions. Journal of Ocean Engineering and Science, 6(1), 1-11.
  35. Soldatos, K. (1992). A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica, 94, 195-220.
  36. Subramanian, P. (2006). Dynamic analysis of laminated composite beams using higher order theories and finite elements. Composite Structures, 73(3), 342-353.
  37. Touratier, M. (1991). An efficient standard plate theory. International Journal of Engineering Science, 29(8), 901-916.
  38. Zhen, W., & Wanji, C. (2008). An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams. Composite Structures, 84(4), 337-349.

Similar Articles

You may also start an advanced similarity search for this article.