Damage detection of beam-like structures using a combination of wavelet transform and subtraction of intact and damaged mode shapes
##plugins.themes.academic_pro.article.main##
Abstract
Detection of damages with low levels has been one of the most critical challenges. As a result, many damage detection methods cannot detect damages or cracks with a level lower than 10%. On-surface damages as low-level damages are challenging to localize. A new technique is proposed to eliminate this challenge based on wavelet transformation of the difference in damaged and intact mode shapes. In this way, a finite element model is developed for obtaining governing equations of thin beams. The developed finite element model provides the mode shape signals. Then, the signals are decomposed by wavelet transform. The findings of this study show that in both numerical and experimental investigations, the proposed method is very efficient since the proposed method can detect on-surface damages having a level below 10%.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abdulkareem, M., Bakhary, N., Ganiyu, A., Nathaniel, O., Jassam, T. M., & Al-Mansob, R. A. (2021). Consideration of uncertainty in damage detection using interval analysis wavelet without baseline data. Journal of Structural Integrity and Maintenance, 6(2), 99-109.
- Azami, M., & Salehi, M. (2019). Response-based multiple structural damage localization through multi-channel empirical mode decomposition. Journal of Structural Integrity and Maintenance, 4(4), 195-206.
- Bjørheim, F., Siriwardane, S. C., & Pavlou, D. (2022). A review of fatigue damage detection and measurement techniques. International Journal of Fatigue, 154, Article 106556.
- Cao, M., Cheng, L., Su, Z., & Xu, H. (2012). A multi-scale pseudo-force model in wavelet domain for identification of damage in structural components. Mechanical Systems and Signal Processing, 28, 638-659.
- Erkal, B. G., & Hajjar, J. F. (2017). Laser-based surface damage detection and quantification using predicted surface properties. Automation in Construction, 83, 285-302.
- Hu, H., Wang, B. T., Lee, C. H., & Su, J. S. (2006). Damage detection of surface cracks in composite laminates using modal analysis and strain energy method. Composite Structures, 74(4), 399-405.
- Jafari-Talookolaei, R.-A., Kargarnovin, M. H., & Ahmadian, M. T. (2013). Dynamic response of a delaminated composite beam with general lay-ups based on the first-order shear deformation theory. Composites Part B: Engineering, 55, 65-78,
- Khatir, S., Dekemele, K., Loccufier, M., Khatir, T., & Wahab, M. A. (2018). Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization. Comptes Rendus Mécanique, 346(2), 110-120.
- Li, X., Gao, C., Guo, Y., He, F., & Shao, Y. (2019). Cable surface damage detection in cable-stayed bridges using optical techniques and image mosaicking. Optics & Laser Technology, 110, 36-43.
- Liu, J. L., Wang, S. F., Li, Y. Z., & Yu, A. H. (2024). Time-varying damage detection in beam structures using variational mode decomposition and continuous wavelet transform. Construction and Building Materials, 411, Article 134416.
- McGeown, C., Huseynov, F., Hester, D., McGetrick, P., Obrien, E. J., & Pakrashi, V. (2021). Using measured rotation on a beam to detect changes in its structural condition. Journal of Structural Integrity and Maintenance, 6(3), 159-166.
- Montanari, L., Spagnoli, A., Basu, B., & Broderick, B. (2015). On the effect of spatial sampling in damage detection of cracked beams by continuous wavelet transform. Journal of Sound and Vibration, 345, 233-249.
- Ramesh, L., & Rao, P. S. (2018). Damage detection in structural beams using model strain energy method and wavelet transform approach. Materials Today: Proceedings, 5(9), 19565-19575.
- Räsänen, J., Silvennoinen, R., Peiponen, K. E., & Asakura, T. (1994). On surface damage detection of slightly rough metal surfaces. Optics and Lasers in Engineering, 20(1), 65-69.
- Rucka, M. (2011). Damage detection in beams using wavelet transform on higher vibration modes. Journal of Theoretical and Applied Mechanics, 49(2), 399-417.
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., & Khatir, S. (2021). Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique. Composite Structures, 278, Article 114656.
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., & Khatir, S. (2022a). Damage detection in rectangular laminated composite plate structures using a combination of wavelet transforms and artificial neural networks. Journal of Vibration Engineering & Technologies, 10(5), 1647-1664.
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., & Khatir, S. (2022b). Experimental acoustic-wavelet method for damage detection on laminated composite structures. In International conference of steel and composite for engineering structures (pp. 93-113). Cham: Springer International Publishing.
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., Khatir, S., & Wahab, M. A. (2022c). Application of multilayer perceptron neural network for damage detection in rectangular laminated composite plates based on vibrational analysis. In Proceedings of the 2nd International conference on structural damage modelling and assessment (pp. 163-178). Singapore: Springer.
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., Khatir, S., & Wahab, M. A. (2022d). Pearson correlation and discrete wavelet transform for crack identification in steel beams. Mathematics, 10(15), Article 2689.
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., Khatir, S., & Wahab, M. A. (2022e). A robust technique for damage identification of marine fiberglass rectangular composite plates using 2-D discrete wavelet transform and radial basis function networks. Ocean Engineering, 263, Article 112317.
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., Khatir, S., & Wahab, M. A. (2022f). Delamination detection of rectangular laminated composite plates by combining the one-dimensional and two-dimensional discrete wavelet transforms. In Proceedings of the 10th International Conference on fracture fatigue and wear: FFW 2022, 2-3 August, Ghent University, Belgium (pp. 41-51). Singapore: Springer Nature.
- Saadatmorad, M., Khatir, S., Le, C. T., Benaissa, B., & Mahmoudi, S. (2024). Detecting damages in metallic beam structures using a novel wavelet selection criterion. Journal of Sound and Vibration, 578, Article 118297.
- Saadatmorad, M., Shahavi, M. H., & Gholipour, A. (2024). Damage detection in laminated composite beams reinforced with nano-particles using covariance of vibration mode shape and wavelet transform. Journal of Vibration Engineering & Technologies, 12(3), 2865-2875.
- Saadatmorad, M., Siavashi, M., Jafari-Talookolaei, R.-A., Pashaei, M. H., Khatir, S., & Le, C. T. (2021). Multilayer perceptron neural network for damage identification based on dynamic analysis. In Structural health monitoring and engineering structures (pp. 29-48). Singapore: Springer.
- Serra, R., & Lopez, L. (2017). Damage detection methodology on beam-like structures based on combined modal Wavelet Transform strategy. Mechanics & Industry, 18(8), Article 807.
- Shihavuddin, A. S. M., Chen, X., Fedorov, V., Christensen, A. N., Riis, N. A. B., Branner, K., … Paulsen, R. R. (2019). Wind turbine surface damage detection by deep learning aided drone inspection analysis. Energies, 12(4), Article 676.
- Shim, S., Chun, C., & Ryu, S. K. (2019). Road surface damage detection based on object recognition using Fast R-CNN. The Journal of the Korea Institute of Intelligent Transport Systems, 18(2), 104-113.
- Wahab, M. A., & De Roeck, G. (1999). Damage detection in bridges using modal curvatures: Application to a real damage scenario. Journal of Sound and Vibration, 226(2), 217-235.
- Zhang, C., Chang, C. C., & Jamshidi, M. (2020). Concrete bridge surface damage detection using a single-stage detector. Computer‐Aided Civil and Infrastructure Engineering, 35(4), 389-409.