2D Continuous Wavelet Transform for Pattern Recognition: Application to the Azadi Tower

##plugins.themes.academic_pro.article.main##

Morteza Saadatmorad

Abstract

This paper explores the unique capabilities of the Two-Dimensional Continuous Wavelet Transform (2D-CWT) in Structural Pattern Recognition (SPR). It uses the historic Azadi Tower as a case study due to its diverse structural patterns across various scales and angles. Thus, the novelty of the work is to apply the 2D-CWT for pattern recognition of a historic structure. It examines the effects of scale and angle indices on target pattern extraction and the influence of different wavelet functions on recognition outcomes. Results show that reducing the angle index enhances edge detection, allowing for identifying edges and patterns from multiple directions. Moreover, higher scales of 2D-CWT are sensitive to local abrupt changes in images, underscoring the transform’s dual capabilities. The paper also highlights 2D-CWT’s proficiency in detecting directional edges and singularities.

##plugins.themes.academic_pro.article.details##

How to Cite
Saadatmorad, M. (2025). 2D Continuous Wavelet Transform for Pattern Recognition: Application to the Azadi Tower. HCMCOU Journal of Science – Advances in Computational Structures, 15(1), 59–71. https://doi.org/10.46223/HCMCOUJS.acs.en.15.1.71.2025

References

  1. Abdel-Qader, I., Abudayyeh, O., & Kelly, M. E. (2003). Analysis of edge-detection techniques for crack identification in bridges. Journal of Computing in Civil Engineering, 17(4),
    255-263. DOI: https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
  2. Abid, A. Z., Gdeisat, M. A., Burton, D. R., Lalor, M. J., Abdul-Rahman, H. S., & Lilley, F. (2008). Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform. In Optical and digital image processing (Vol. 7000, pp. 237-242). SPIE. DOI: https://doi.org/10.1117/12.781677
  3. Ahmed, A. S. (2018). Comparative study among Sobel, Prewitt and Canny edge detection operators used in image processing. Journal of Theoretical and Applied Information Technology, 96(19), 6517-6525.
  4. Avdelidis, N. P., & Moropoulou, A. (2004). Applications of infrared thermography for the investigation of historic structures. Journal of Cultural Heritage, 5(1), 119-127. DOI: https://doi.org/10.1016/j.culher.2003.07.002
  5. Diba, D. (2012). Contemporary architecture of Iran. Architectural Design, 82(3), 70-79. DOI: https://doi.org/10.1002/ad.1406
  6. Germanese, D., Leone, G. R., Moroni, D., Pascali, M. A., & Tampucci, M. (2018). Long-term monitoring of crack patterns in historic structures using UAVs and planar markers:
    A preliminary study. Journal of Imaging, 4(8), 98-99. DOI: https://doi.org/10.3390/jimaging4080099
  7. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London, 207, 187-217. DOI: https://doi.org/10.1098/rspb.1980.0020
  8. Saadatmorad, M., Khatir, S., Le, C. T., Benaissa, B., & Mahmoudi, S. (2024). Detecting damages in metallic beam structures using a novel wavelet selection criterion. Journal of Sound and Vibration, 578(1), 131-146. DOI: https://doi.org/10.1016/j.jsv.2024.118297
  9. Saadatmorad, M., Rezaei-Sedehi, E., & Khatir, S. (2024). Crack detection in historic structures using an improved Prewitt filter: Case study of the Historic Si-o-se-pol Bridge in Iran. HCMCOU Journal of Science-Advances in Computational Structures, 14(1), 20-26. DOI: https://doi.org/10.46223/HCMCOUJS.acs.en.14.1.41.2024
  10. Saleh, A. K., Sakka, Z., & Almuhanna, H. (2022). The application of two-dimensional continuous wavelet transform based on active infrared thermography for subsurface defect detection in concrete structures. Buildings, 12(11), 103-118. DOI: https://doi.org/10.3390/buildings12111967
  11. Singh, A., Rawat, A., & Raghuthaman, N. (2022). Mexican hat wavelet transform and its applications. Methods of Mathematical Modelling and Computation for Complex Systems, 299-317. DOI: https://doi.org/10.1007/978-3-030-77169-0_12
  12. Sohn, H., Farrar, C. R., Hunter, N. F., & Worden, K. (2001). Structural health monitoring using statistical pattern recognition techniques. Journal of Dynamic Systems, Measurement, and Control, 123(4), 706-711. DOI: https://doi.org/10.1115/1.1410933
  13. Wang, N., & Lu, C. (2010). Two-dimensional continuous wavelet analysis and its application to meteorological data. Journal of Atmospheric and Oceanic Technology, 27(4), 652-666. DOI: https://doi.org/10.1175/2009JTECHA1338.1
  14. Wang, N., Zhao, Q., Li, S., Zhao, X., & Zhao, P. (2018). Damage classification for masonry historic structures using convolutional neural networks based on still images. Computer‐Aided Civil and Infrastructure Engineering, 33(12), 1073-1089. DOI: https://doi.org/10.1111/mice.12411
  15. Wei, Y., Zhao, Z., & Song, J. (2004). Urban building extraction from high-resolution satellite panchromatic image using clustering and edge detection. IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 3(1), 2008-2010. DOI: https://doi.org/10.1109/IGARSS.2004.1370742
  16. Yang, L., Wu, X., Zhao, D., Li, H., & Zhai, J. (2011). An improved Prewitt algorithm for edge detection based on noised image. 4th International Congress on Image and Signal Processing, 3(1), 1197-1200. DOI: https://doi.org/10.1109/CISP.2011.6100495

Similar Articles

You may also start an advanced similarity search for this article.