A Comparative study of metaheuristic algorithms in the identification of structural damage in composite beams

##plugins.themes.academic_pro.article.main##

Mohand Amokrane Lounis
Amar Behtani
Khatir Bochra
Samir TIACHACHT
Mohand Slimani

Abstract

Structural damage, whether visible or hidden, is an inevitable occurrence in all structures, machines, and tools, arising from factors such as machining processes, wear, and impact. Over the years, significant efforts in structural dynamics have been devoted to evaluating and reconciling numerical models with experimental data to accurately detect and quantify such damage. This study presents a comprehensive approach to identifying and quantifying structural damage in multilayer composite beams by first assessing the global modal and frequency differences between undamaged and damaged structures using the Frequency Response Function (FRF) method. These results are then utilized in various metaheuristic optimization algorithms to precisely detect and quantify the extent of the damage. The focus of this work is to evaluate the effectiveness of three optimization algorithms: the African Vulture Optimization Algorithm (AVOA), the Salp Swarm Algorithm (SSA), and the Whale Optimization Algorithm (WOA). These algorithms are tested on a composite structure to determine their accuracy and computational efficiency in identifying structural damage.

##plugins.themes.academic_pro.article.details##

How to Cite
Lounis, M. A., Behtani, A., Bochra, K., TIACHACHT, S., & Slimani, M. (2024). A Comparative study of metaheuristic algorithms in the identification of structural damage in composite beams . HCMCOU Journal of Science – Advances in Computational Structures, 15(1). https://doi.org/10.46223/HCMCOUJS.acs.en.15.1.64.2025

References

  1. Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019). IEEE Access, 9, 26766-26791. https://doi.org/10.1109/ACCESS.2021.3056407
  2. Bai, J., Li, Y., Zheng, M., Khatir, S., Benaissa, B., Abualigah, L., & Wahab, M. A. (2023). A sinh cosh Knowledge-Based https://doi.org/10.1016/j.knosys.2023.111081
  3. Benaissa, B., Hocine, N. A., Khatir, S., Riahi, M. K., & Mirjalili, S. (2021). YUKI Algorithm and POD-RBF for Elastostatic and dynamic crack identification. Journal of Computational Science, 55, Article 101451. https://doi.org/10.1016/j.jocs.2021.101451
  4. Benaissa, B., Kobayashi, M., Al Ali, M., Khatir, T., & Elmeliani, M. E. A. E. (2024). Metaheuristic Optimization Algorithms: An overview. HCMCOU Journal of Science - Advances in Computational Structures, https://doi.org/10.46223/HCMCOUJS.acs.en.14.1.47.2024
  5. Cawley, P., & Adams, R. D. (1979). The location of defects in structures from measurements of natural frequencies. The Journal of Strain Analysis for Engineering Design, 14(2), 49-57. https://doi.org/10.1243/03093247v142049
  6. Dehghani, M., Montazeri, Z., Trojovská, E., & Trojovský, P. (2023). Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge Based Systems, 259, https://doi.org/https://doi.org/10.1016/j.knosys.2022.110011
  7. Dinh, D. C., Dang, H. T., Nguyen, T. T. (2018). An efficient approach for optimal sensor placement and damage identification in laminated composite structures. Advances in Engineering Software, 119, 48-59.
  8. Dorigo, M., & Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, applications, and advances. In F. Glover & G. A. Kochenberger (Eds.), Handbook of Metaheuristics (pp. 250-285). Springer.
  9. Dorigo, M., & Stützle, T. (2019). Ant colony optimization: Overview and recent advances. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp. 311-351). Springer International Publishing.
  10. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39. https://doi.org/10.1109/MCI.2006.329691
  11. Friswell, M., Penny, J., & Wilson, D. (1994). Using vibration data and statistical measures to locate damage in structures. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 9(4), 239-254.
  12. Geem, Z. W. (2010). State-of-the-art in the structure of harmony search algorithm. In Z. W. Geem (Ed.), Recent Advances in Harmony Search Algorithm (pp. 1-10). Springer.
  13. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201
  14. Gendreau, M., & Potvin, J.-Y. (2005). Metaheuristics in combinatorial optimization. Annals of Operations Research, 140(1), 189-213. https://doi.org/10.1007/s10479-005-3971-7
  15. Gürses, D., Mehta, P., Sait, S. M., & Yildiz, A. R. (2022). African vultures optimization algorithm for optimization of shell and tube heat exchangers. Materials Testing, 64(8), 1234-1241.
  16. Hertz, A., Taillard, E., & De Werra, D. (1995). A tutorial on tabu search. Proceedings of Giornate di Lavoro AIRO’95 (Entreprise Systems: Management of Technological and Organizational Changes), 13-24.
  17. Hwang, H. Y., & Kim, C. (2004). Damage detection in structures using a few frequency response measurements. Journal of Sound https://doi.org/10.1016/S0022-460X(03)00190-1
  18. Kahouadji, A., Tiachacht, S., Slimani, M., Behtani, A., Khatir, S., & Benaissa, B. (2022). Vibration-based damage assessment in truss structures using local frequency change ratio indicator combined with metaheuristic optimization algorithms. In R. Capozucca, S. Khatir & G. Milani (Eds.), Proceedings of the International Conference of Steel and Composite for Engineering Structures. Lecture Notes in Civil Engineering, (Vol. 317). Springer. https://doi.org/10.1007/978-3-031-24041-6_14.
  19. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67.
  20. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
  21. Naruei, I., Keynia, F., & Molahosseini, A. S. (2022). Hunter-prey optimization: Algorithm and applications. Soft Computing, 26(3), 1279-1314. https://doi.org/10.1007/s00500-021 06401-0
  22. Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M. A., Behtani, A., & Capozucca, R. (2018). Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm. Engineering Structures, 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070
  23. Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13), Article 1620.
  24. Wong, W., & Ming, C. I. (2019). A review on metaheuristic algorithms: Recent trends, benchmarking and applications. 7th International Conference on Smart Computing & Communications (ICSCC), 1-5. https://doi.org/10.1109/ICSCC.2019.8843624.
  25. Yang, X.-S. (2009). Harmony search as a metaheuristic algorithm. In Z. W. Geem (Ed.), Music inspired harmony search algorithm: Theory and applications (pp. 1-14). Springer.
  26. Zitouni, F., Harous, S., & Maamri, R. (2020). A distributed approach to the multi-robot task allocation problem using the consensus-based bundle algorithm and ant colony system. IEEE Access, 8, 27479-27494. https://doi.org/10.1109/ACCESS.2020.2971585